

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2007 by Ed Wilson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2006934395

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 1 0 9 8 7 6

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, ActiveX, Excel, MSDN, Visual Basic, Win32, Windows,
Windows NT, Windows Server, and Windows Vista are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.
The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Martin DelRe
Project Editor: Maureen Williams Zimmerman
Copy Editor: Sarah Wales-McGrath
Technical Reviewer: David Holder
Indexer: Jeanne Busemeyer

Body Part No. X13-24158

http:mspinput@microsoft.com

Dedication

This book is dedicated to my best friend, Teresa.

Con

Part I

1

2

3

4

5

Part II

6

7

8

9

10

Part III

11

12

13

14

15

16

17

18
tents at a Glance

Covering the Basics

Starting from Scratch . 3

Looping Through the Script . 25

Adding Intelligence . 55

Working with Arrays . 81

More Arrays . 113

Basic Windows Administration

Working with the File System . 139

Working with Folders . 165

Using WMI . 187

WMI Continued . 207

Querying WMI . 227

Advanced Windows Administration

Introduction to Active Directory Service Interfaces 251

Writing for ADSI. 269

Using ADO to Perform Searches . 293

Configuring Network Components. 315

Using Subroutines and Functions . 329
v

Logon Scripts . 349

Working with the Registry . 367

Working with Printers . 381

vi

Part IV

19

20

21

Part V

A

B

C

D

E

Contents at a Glance

Scripting Other Applications

Managing IIS 6.0 . 395

Working with Exchange 2003 . 407

Troubleshooting WMI Scripting . 419

Appendices

VBScript Documentation . 443

ADSI Documentation. 449

WMI Documentation. 457

Documentation Standards . 463

Special Folder Constants. 467

Index . 469

Tab

Part I

1

2

What
le of Contents

Acknowledgments. .xvii

Introduction . xix

Covering the Basics

Starting from Scratch . 3

Running Your First Script . 3

Header Information . 5

Reference Information. 8

Worker Information . 9

Output Information . 12

Enhancing Your Script . 13

Modifying an Existing Script . 14

Modifying the Header Information . 15

Modifying the Reference Information. 16

Modifying the Worker Information . 18

Modifying the Output Information . 19

Exploring a Script: Step-by-Step Exercises . 22

One Step Further: Customizing an Existing Script. 22

Looping Through the Script . 25

Adding Power to Scripts . 25

For Each…Next . 26

Header Information . 27

Reference Information. 30

Worker Information . 30

For…Next . 31

Header Information . 32

Reference Information. 33

Worker and Output Information . 34
vii

 do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

viii Table of Contents
Do While…Loop . 37

Header Information. 38

Reference Information . 39

Worker and Output Information . 40

Do Until…Loop . 43

Worker and Output Information . 45

Do…Loop . 47

While…Wend . 47

Creating Additional Objects . 48

Using the For Each…Next Command Step-by-Step Exercises . 51

One Step Further: Modifying the Ping Script . 52

3 Adding Intelligence . 55

If…Then . 55

Header Information. 57

Reference Information . 57

Worker and Output Information . 58

If…Then…ElseIf . 62

Header Information. 64

Reference Information . 65

Worker and Output Information . 65

If…Then…Else. 67

Select Case. 69

Header Information. 71

Reference Information . 71

Worker and Output Information . 72

Modifying CPUType.vbs Step-by-Step Exercises . 74

One Step Further: Modifying ComputerRoles.vbs . 76

4 Working with Arrays . 81

Passing Arguments . 81

Command-Line Arguments . 81

Making the Change. 82

Running the Command Prompt . 83

No Arguments? . 84

Creating a Useful Error Message . 84

Using Multiple Arguments . 86

Header Information. 88

Reference Information . 88

Table of Contents ix

Worker and Output Information . 89

Tell Me Your Name . 89

Reasons for Named Arguments . 90

Making the Change to Named Arguments . 90

Running a Script with Named Arguments . 92

Working with Arrays. 93

Moving Past Dull Arrays . 95

Header Information . 96

Reference Information. 96

Worker and Output Information . 96

What Does UBound Mean? . 97

Two-Dimensional Arrays . 101

Mechanics of Two-Dimensional Arrays . 101

Header Information . 102

Reference Information. 102

Worker and Output Information . 102

Passing Arguments Step-by-Step Exercises . 103

One Step Further: Building Arrays . 107

5 More Arrays . 113

Strings and Arrays. 113

Parsing Passed Text into an Array . 114

Header Information . 115

Reference Information. 116

Worker Information . 117

Output Information . 118

Parsing Passed Text. 121

Header Information . 123

Reference Information. 123

Worker Information . 124

Output Information . 124

Working with Dictionaries. 125

Understanding the Dictionary Object. 125

Adding Items to the Dictionary . 126

Using Basic InStr Step-by-Step Exercises. 132

One Step Further: Creating a Dictionary . 133

x Table of Contents
Part II Basic Windows Administration

6 Working with the File System . 139

Creating the File System Object . 139

File It Under Files . 140

Header Information. 140

Reference Information . 141

Worker and Output Information . 142

File Properties. 144

File Attributes . 145

Implementing the Attributes Property. 146

Setting File Attributes . 148

Creating Files . 149

Writing to a Text File . 149

Determining the Best Way to Write to a File. 150

Overwriting a File . 150

Verifying a File Exists . 156

Creating Files Step-by-Step Exercises . 161

One Step Further: Creating a Log File . 162

7 Working with Folders . 165

Working with Folders . 165

Creating the Basic Folder . 165

Creating Multiple Folders. 166

Header Information. 167

Reference Information . 167

Worker Information. 167

Output Information. 168

Automatic Cleanup . 172

Deleting a Folder . 172

Deleting Multiple Folders. 173

Binding to Folders . 174

Does the Folder Exist? . 175

Copying Folders . 176

Moving Folders . 178

Creating Folders Step-by-Step Exercises . 182

One Step Further: Deleting Folders . 184

xi Table of Contents
8 Using WMI . 187

Leveraging WMI . 187

Understanding the WMI Model . 188

Working with Objects and Namespaces . 189

Digging Deeper . 191

Listing WMI Providers . 192

Working with WMI Classes . 194

Viewing Properties . 197

Working with WMI Methods . 199

Querying WMI . 201

Header Information . 202

Reference Information. 202

Worker and Output Information . 203

Retrieving Hotfix Information Step-by-Step Exercises . 204

One Step Further: Echoing the Time Zone. 205

9 WMI Continued . 207

Alternate Ways of Configuring the WMI Moniker. 207

Accepting Defaults . 208

Reference Information. 208

Worker and Output Information . 208

Moniker Security Settings . 214

WbemPrivilege Has Its Privileges . 215

Using the Default WMI Moniker Step-by-Step Exercises . 220

Invoking the WMI Moniker to Display the Machine Boot Configuration 221

Including Additional Security Permissions . 222

One Step Further: Using Win32_Environment and VBScript to Learn About WMI 224

10 Querying WMI . 227

Tell Me Everything About Everything! . 227

Header Information . 228

Reference Information. 229

Worker and Output Information . 229

Selective Data from All Instances . 230

Selecting Multiple Properties . 231

Choosing Specific Instances . 237

Using an Operator . 238

Where Is the Where Clause? . 241

xii Table of Contents
Writing an Informative WMI Script Step-by-Step Exercises . 244

One Step Further: Obtaining More Direct Information . 245

Part III Advanced Windows Administration

11 Introduction to Active Directory Service Interfaces 251

Working with ADSI . 251

Reference Information . 253

LDAP Names. 255

Worker Information. 255

Output Information. 257

Creating Users . 258

Reference Information . 259

Worker Information. 259

Output Information. 259

Creating OUs Step-by-Step Exercises . 263

One Step Further: Creating Multi-Valued Users . 265

12 Writing for ADSI. 269

Working with Users . 269

General User Information. 270

Reference Information . 272

Worker Information. 272

Output Information. 273

Modifying the Address Tab Information . 274

Reference Information . 275

Worker Information. 275

Output Information. 277

Modifying Terminal Server Settings . 283

Deleting Users . 287

Deleting Users Step-by-Step Exercises . 289

One Step Further: Using the Event Log . 290

13 Using ADO to Perform Searches . 293

Connecting to Active Directory to Perform a Search . 293

Header Information. 295

Reference Information . 295

Worker and Output Information . 296

Table of Contents xiii

Creating More Effective Queries . 297

Searching for Specific Types of Objects . 299

Reference Information. 301

Output Information . 301

What Is Global Catalog? . 303

Creating an ADO Query into Active Directory Step-by-Step Exercises 311

One Step Further: Controlling Script Execution While

Querying Active Directory . 312

14 Configuring Network Components. 315

WMI and the Network . 315

Making the Connection. 316

Header Information . 317

Reference Information. 318

Worker and Output Information . 318

Changing the TCP/IP Settings . 320

Header Information . 321

Reference Information. 321

Worker and Output Information . 321

Merging WMI and ADSI . 322

Win32_NetworkAdapterConfiguration. 323

Using WMI to Assign Network Settings Step-by-Step Exercises 325

One Step Further: Combining WMI and ADSI in a Script . 326

15 Using Subroutines and Functions . 329

Working with Subroutines. 329

Calling the Subroutine. 331

Creating the Subroutine . 332

Creating Users and Logging Results . 332

Header Information . 335

Reference Information. 335

Worker Information . 336

Output Information . 336

Working with Functions. 341

Using ADSI and Subs, and Creating Users Step-by-Step Exercises 343

One Step Further: Adding a Logging Subroutine . 345

xiv Table of Contents
16 Logon Scripts . 349

Working with IADsADSystemInfo . 349

Using Logon Scripts. 351

Deploying Logon Scripts. 352

Header Information. 354

Reference Information . 355

Worker Information. 357

Output Information. 358

Adding a Group to a Logon Script Step-by-Step Exercises . 360

One Step Further: Adding Logging to a Logon Script . 362

17 Working with the Registry . 367

First You Back Up . 367

Creating the WshShell Object . 368

Setting the comspec Variable . 368

Defining the Command . 369

Connecting to the Registry . 370

Header Information. 371

Reference Information . 371

Worker and Output Information . 372

Unleashing the Power of the StdRegProv Class . 372

Creating Registry Keys. 373

Header Information. 374

Reference Information . 374

Worker and Output Information . 375

Writing to the Registry . 375

Deleting Registry Information . 376

Reading the Registry Using WMI Step-by-Step Exercises . 377

One Step Further: Creating Registry Keys . 378

18 Working with Printers . 381

Working with Win32_Printer . 381

Obtaining the Status of Printers . 382

Header Information. 383

Reference Information . 384

Worker Information. 384

Output Information. 385

Table of Contents xv

Creating a Filtered Print Monitor . 386

Reference Information. 387

Output Information . 387

Monitoring Print Queues. 388

Worker and Output Information . 389

Monitoring Print Jobs Step-by-Step Exercises . 389

One Step Further: Checking the Status of a Print Server . 391

Part IV Scripting Other Applications

19 Managing IIS 6.0 . 395

Locating the WMI Classes for IIS 6.0 . 395

CIM_ManagedSystemElement . 395

CIM_Setting . 395

IIsStructuredDataClass . 396

CIM_Component . 396

CIM_ElementSetting . 396

Using MicrosoftIISv2 . 396

Making the Connection. 397

Header Information . 397

Reference Information. 398

Worker and Output Information . 399

Creating a Web Site . 399

Header Information . 400

Reference Information. 401

Worker and Output Information . 402

Backing Up the Metabase Step-by-Step Exercises . 403

One Step Further: Importing the Metabase . 404

20 Working with Exchange 2003 . 407

Working with the Exchange Provider . 407

Connecting to MicrosoftExchangeV2 . 408

The Exchange_QueueSMTPVirtualServer Class . 409

Header Information . 409

Reference Information. 410

Worker Information . 410

Output Information . 410

Exchange Public Folders . 411

xvi Table of Contents
Exchange_FolderTree. 413

Using the Exchange_Logon Class Step-by-Step Exercises . 414

One Step Further: Using the Exchange_Mailbox Class . 416

21 Troubleshooting WMI Scripting . 419

Identifying the Problem . 419

Spotting Common Sources of Errors . 419

Testing the Local WMI Service . 420

Using the WMI Control Tool . 420

Using the Scriptomatic . 422

Examining the Status of the WMI Service . 422

Using WBEMtest.exe . 423

Testing Remote WMI Service . 424

Remotely Using the WMI Control Tool. 424

Testing Scripting Interface . 425

Obtaining Diagnostic Information . 426

Enabling Verbose WMI Logging . 427

Examining the WMI Log Files . 428

Using the Err Tool . 429

Using MofComp.exe . 430

Using WMIcheck . 431

General WMI Troubleshooting Steps . 432

Working with Logging Step-by-Step Exercises . 433

One Step Further: Compiling MOF Files . 437

Part V Appendices

Appendix A: VBScript Documentation . 443

Appendix B: ADSI Documentation . 449

Appendix C: WMI Documentation . 457

Appendix D: Documentation Standards. 463

Appendix E: Special Folder Constants. 467

Index . 469

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

Acknowledgments

The process of writing a technical book is more a matter of collaboration, support, and team
work, than a single wordsmith sitting under a shade tree with parchment and pen. It is amaz­
ing how many people know about your subject after you begin the process.

I am very fortunate to have assembled a team of friends and well wishers over the past few
years to assist, cajole, exhort, and inspire the words to appear. First and foremost is my wife
Teresa. She has had the great fortune of reading 10 technical books in the past 11 years, while
at the same time putting up with the inevitable encroachment of deadlines on our otherwise
well timed vacation schedule. Claudette Moore of the Moore Literary Agency has done an
awesome job of keeping me busy through all her work with the publishers. Martin DelRe at
Microsoft Press has been a great supporter of scripting technology, and is a great person to
talk to. Maureen Zimmerman, also of Microsoft Press, has done a great job of keeping me on
schedule, and has made numerous suggestions to the improvement of the manuscript.

xvii

Int

A Pr
roduction

Network administrators and consultants are confronted with numerous mundane and time-
consuming activities on a daily basis. Whether it is going through thousands of users in Active
Directory Users and Computers to grant dial-in permissions to a select group, or changing
profile storage locations to point to a newly added network server, these everyday tasks must
be completed. In the enterprise space, the ability to quickly write and deploy a Microsoft
Visual Basic Script (VBScript) will make the difference between a task that takes a few hours
and one that takes a few weeks.

As an Enterprise Consultant for Microsoft Corporation, I am in constant contact with some of
the world’s largest companies that run Microsoft software. The one recurring theme I hear is,
“How can we effectively manage thousands of servers and tens of thousands of users?” In
some instances, the solution lies in the employment of specialized software packages—but in
the vast majority of the cases, the solution is a simple VBScript.

In Microsoft Windows Server 2003, enterprise manageability was one of the design goals, and
VBScript is one path to unlocking the rich storehouse of newly added features. Using the tech­
niques outlined in Microsoft VBScript Step by Step, anyone can begin crafting custom scripts
within minutes of opening these pages. I’m not talking about the traditional Hello World
script—I’m talking about truly useful scripts that save time and help to ensure accurate and
predictable results.

Whereas in the past scripting was somewhat hard to do, required special installations of vari­
ous implementations, and was rather limited in its effect, with the release of Microsoft Win­
dows XP, Windows Server 2003, and Windows Vista, scripting is coming into its own. This is
really as it should be. However, most administrators and IT professionals do not have an
understanding of scripting because in the past scripting was not a powerful alternative for
platform management.

However, in a large enterprise, it is a vital reality that one simply cannot perform management
from the GUI applications because it is too time-constraining, too error prone, and, after a
while, too irritating. Clearly there needs to be a better way, and there is. Scripting is the
answer.

actical Approach to Scripting

Microsoft VBScript Step by Step will equip you with the tools to automate setup, deployment,
and management of Microsoft Windows 2003 networks via the various scripting interfaces
contained within the product. In addition, it will provide you with an understanding of a select
number of VBScripts adaptable to your own unique environments. This will lead you into an
awareness of the basics of programming through modeling of fundamental techniques.

xix

xx

Is Th

Outl

Part I
Introduction

The approach I take to teaching you how to use VBScript to automate your Windows 2003
servers is similar to the approach used in some executive foreign language schools. You’ll
learn by using the language. In addition, concepts are presented not in a dry academic fash­
ion, but in a dynamic, real-life manner. When a concept is needed to accomplish something, it
is presented. If a topic is not useful for automating network management, I don’t bring it forward.

This is a practical, application-oriented book, so the coverage of VBScript, Windows Scripting
Host, Active Directory Service Interfaces (ADSI), and Windows Management Instrumentation
(WMI) is not exceedingly deep. This is not a reference book; it is a tutorial, a guide—a spring­
board for ideas, perhaps—but not an encyclopedia.

is Book for Me?
Microsoft VBScript Step by Step is aimed at several audiences, including:

■	 Windows networking consultants Anyone desiring to standardize and automate the
installation and configuration of .NET networking components.

■	 Windows network administrators Anyone desiring to automate the day-to-day
management of Windows .NET networks.

■	 Windows Help Desk staff Anyone desiring to verify configuration of remotely
connected desktops.

■	 Microsoft Certified Systems Engineers (MCSEs) and Microsoft Certified Trainers (MCTs)
Although scripting is not a strategic core competency within the MCP program, a few
questions about scripting do crop up from time to time on various exams.

■	 General technical staff Anyone desiring to collect information, configure settings on
Windows XP machines, or implement management via WMI, WSH, or WBEM.

■	 Power users Anyone wishing to obtain maximum power and configurability of their
Windows XP machines either at home or in an unmanaged desktop workplace
environment.

ine of This Book
This book is divided into four parts, each covering a major facet of scripting. The following
sections describe these parts.

: Covering the Basics
Okay, so you’ve decided you need to learn scripting. Where do you begin? Start here in Part I!
In Chapter 1, “Starting From Scratch,” you learn the basics: what a script is, how to read it, and
how to write it. Once you move beyond using a script to figure out what your IP address is and
print it to a file, you need to introduce some logic into the script, which you do in Chapter 2
through Chapter 5. You’ll learn how to introduce conditions and add some intelligence to

Part I

Part I
Introduction xxi

allow the script to check some stuff, and then based upon what it finds, do some other stuff.
This section concludes by looking at troubleshooting scripts. I’ve made some mistakes that
you don’t need to repeat! Here are the chapters in Part I:

■ Chapter 1, “Starting from Scratch”

■ Chapter 2, “Looping Through The Script”

■ Chapter 3, “Adding Intelligence”

■ Chapter 4, “Working with Arrays”

■ Chapter 5, “More Arrays”

I: Basic Windows Administration

In Part II, you dig deep into VBScript and WMI and really begin to see the power you can bring
to your automation tasks. In working with the file system, you see how to use the file system
object to create files, delete files, and verify the existence of files. All these basic tasks provide
loads of flexibility for your scripts. Next, you move on to working with folders, learning how
to use VBScript to completely automate the creation of folders and files on your servers and
users’ workstations. In the last half of Part II, you get an in-depth look at the power of WMI
when it is combined with the simplicity and flexibility of VBScript. Here are the chapters in Part II:

■ Chapter 6, “Working with the File System”

■ Chapter 7, “Working with Folders”

■ Chapter 8, “Using WMI”

■ Chapter 9, “WMI Continued”

■ Chapter 10, “Querying WMI”

II: Advanced Windows Administration

This section will shave at least four points off your golf handicap because you’ll get to play an
extra 18 holes a week due to the time you’ll save! At least three things are really painful when
it comes to administering Windows servers: all those click, click, and save motions; all the
time spent waiting for the screen to refresh; and loosing your place in a long list of users.
Guess what? In this section, some of that pain is relieved. When Human Resources hires 100
people, you tell them to send you a spreadsheet with the new users, and then use a script to
create those users. It takes 2 minutes instead of 2 hours. (Dude, that’s the front nine!) In addi­
tion to saving time, scripting your administrative tasks reduces the likelihood of errors. If you

have to set a particular set of access control lists on dozens of folders, a script is the only way
to ensure all the flags are set correctly. Here are the chapters in Part III:

■ Chapter 11, “Introduction to Active Directory Service Interfaces”

■ Chapter 12, “Writing for ADSI”

xxii

Part I

Part V
Introduction

■ Chapter 13, “Using ADO to Perform Searches”

■ Chapter 14, “Configuring Networking Components”

■ Chapter 15, “Using Subroutines and Functions”

■ Chapter 16, “Logon Scripts”

■ Chapter 17, “Working with the Registry”

■ Chapter 18, “Working with Printers”

V: Scripting Other Applications

Once you learn how to use WMI and VBScript to automate Windows Server 2003, the logical
question is, “What else can I do?” Well, with the latest version of Microsoft Exchange and
Internet Information Services (IIS), the answer is, “Quite a lot.” So in this part of the book, you
look at using WMI and VBScript to automate other applications.

In IIS 6.0, nearly everything that can be configured via GUI tools can also be scripted. This
enables the Web administrator to simplify management and to also ensure repeatable config­
uration of the Web sites from a security perspective.

In Exchange administration, many routine tasks can be simplified by using VBScript. In Part
IV, you look at how to leverage the power of VBScript to simplify user management, to config­
ure and administer Exchange, and to troubleshoot some of the common issues confronting
the enterprise Exchange administrator. The chapters in Part IV are as follows:

■ Chapter 19, “Managing IIS 6.0”

■ Chapter 20, “Working with Exchange 2003”

■ Chapter 21, “Troubleshooting WMI Scripting"

: Appendices

The appendices in this book are not the normal “never read” stuff. Indeed, you will find your­
self referring again and again to these five crucial documents. In Appendix A you will find lots
of ideas for further work in developing your mastery of VBScript. Appendix B will save you
many hours of searching for the “special names” that unlock the power of ADSI scripting.
Appendix C helps you find the special WMI namespaces that enable you to perform many
cool “tricks” in your scripting. And last but certainly not least is Appendix D, which contains
my documentation “cheat sheet.” Actually, you will want to read it rather early in your script­
ing career. Appendix E contains the Special Folder Constants, which, as you will see in the

very first script in the book, can provide easy access to some of the most vital folders on your
workstation!

■ Appendix A, “VBScript Documentation”

■ Appendix B, “ADSI Documentation”

Find

Abo
Introduction xxiii

■	 Appendix C, “WMI Documentation”

■	 Appendix D, “Documentation Standards”

■	 Appendix E, “Special Folder Constants”

ing Your Best Starting Point
This book will help you add essential skills for using VBScript to automate your Windows
environment. You can use this book if you are new to scripting, new to programming, or
switching from another scripting language. The following table will assist you in picking the
best starting point in the book.

If you are Follow these steps

New to programming Install the practice files as described in the
section “Installing the Practice Files on Your
Computer” later in this Introduction.

Learn the basic skills for using VBScript by
working through Chapters 1-7 in order.

New to VBScript Install the practice files as described in the
section “Installing the Practice Files on Your
Computer” later in this Introduction.

Skim through Chapter 1, making sure you pay
attention to the section on creating objects.

Skim Chapter 2 and Chapter 3.

Complete Chapter 4 through Chapter 7 in order.

Experienced with VBScript but are interested in Install the practice files as described in the
using WMI section “Installing the Practice Files on Your

Computer” later in this Introduction.

Skim Chapter 4, paying attention to handling
arrays.

Work through Chapters 8-10 in order.
Complete Chapter 14.

ut the Companion CD
The CD accompanying this book contains additional information and software components,
including the following files:
■	 Sample Files The chapter folders contain starter scripts, some text files, and completed
solutions for each of the procedures contained in this book. In addition, each of the
scripts discussed in the book is contained in the folder corresponding to the chapter
number. For instance, in Chapter 1 we talk about enumerating disk drives on a com­

xxiv

Instal
An end user license agreement should open automatically. If this agreement
does not appear, open My Computer on the desktop or Start menu, double-click the
icon for your CD-ROM drive, and then double-click StartCD.exe.

Introduction

puter system. The script that makes up the bulk of our discussion around that topic is
contained in the \My Documents\Microsoft Press\VBScriptSBS\ch01 folder. You’ll also
find many bonus scripts in the chapter folders. In addition to the sample files in the
chapter folders, the CD includes a Templates folder, a Resources folder, a Supplemental
folder, and a Utilities folder. These folders contain dozens of my favorite scripts and util­
ities I have written over the last several years to solve literally hundreds of problems. You
will enjoy playing around with these and incorporating them into daily scripting tasks.
For example, in the Templates folder you will find my WMITemplate.vbs script. By using
it as a starter, you can write a custom WMI script in less than five seconds. By using the
ADOSearchTemplate.vbs script as a starter, you can write a script that returns all the
users in a particular OU in less than three seconds. In the Utilities folder you will find,
for example, a script that converts bytes into kilobytes, megabytes, or gigabytes depend­
ing on the largest whole number that can be so created.

■	 eBook You can view an electronic version of this book on screen using Adobe Acrobat
Reader. For more information, see the Readme.txt file included in the root folder of the
Companion CD.

■	 Tools and Resources Additional tools and resources to make scripting faster and easier:
Scriptomatic 2.0, Tweakomatic, EZADScriptomatic, WMI Admin Tools, WMI CodeCre­
ator, WMI Diag.

ling the Practice Files on Your Computer

Follow these steps to install the practice files on your computer so that you can use them with
the exercises in this book.

1.	 Remove the companion CD from the package inside this book and insert it into your
CD-ROM drive.

Note

2.	 Review the end user license agreement. If you accept the terms, select the accept option
and then click Next.

A menu will appear with options related to the book.

3.	 Click Install Code Samples.
4.	 Follow the instructions that appear.

The code samples are installed to the following location on your computer:

My Documents\Microsoft Press\VBScriptSBS\

Unins

Syste

Techn
Introduction xxv

talling the Practice Files

Follow these steps to remove the practice files from your computer.

1.	 In the Control Panel, open Add Or Remove Programs.

2.	 From the list of Currently Installed Programs, select Microsoft VBScript Step by Step.

3.	 Click Remove.

4.	 Follow the instructions that appear to remove the code samples.

m Requirements
■	 Special Folder Constants

■	 Minimum 233 MHz in the Intel Pentium/Celeron family or the AMD k6/Atholon/
Duron family

■	 64 MB memory

■	 1.5 GB available hard disk space

■	 Display monitor capable of 800 x 600 resolution or higher

■	 CD-ROM drive or DVD drive

■	 Microsoft Mouse or compatible pointing device

■	 Windows Server 2003,Windows XP, or Windows Vista

■	 The MSI Provider installed on Windows Server 2003 (required for some of the WMI
procedures)

■	 Microsoft Office Excel or Excel Viewer

ical Support

Every effort has been made to ensure the accuracy of this book and the contents of the com­
panion CD-ROM. Microsoft Press provides corrections for books through the World Wide
Web at http:// www.microsoft.com/learning/support.

To connect directly with the Microsoft Press Knowledge Base and enter a query regarding a
question or an issue that you might have, go to http://www.microsoft.com/learning/support
/search.asp.
If you have comments, questions, or ideas regarding this book or the companion CD-ROM,
please send them to Microsoft Press using either of the following methods:

E-mail:

msinput@microsoft.com

http://www.microsoft.com/learning/support
mailto:msinput@microsoft.com

xxvi
Introduction

Postal Mail:

Microsoft Press

Attn: Editor, Microsoft VBScript Step by Step

One Microsoft Way

Redmond, WA 980526399

Please note that product support is not offered through the preceding addresses.

For additional support information regarding this book and the CD-ROM (including answers
to commonly asked questions about installation and use), visit the Microsoft Press Technical
Support Web site at www.microsoft.com/learning/support/books/. For support information
regarding Microsoft software, please connect to http://support.microsoft.com.

http://support.microsoft.com

In this part:

Part I

Covering the Basics

Chapter 1: Starting from Scratch . 3

Chapter 2: Looping Through the Script . 25

Chapter 3: Adding Intelligence . 55

Chapter 4: Working with Arrays . 81

Chapter 5: More Arrays . 113

Runn
Chapter 1

Starting from Scratch

After completing this chapter, you will be able to:

■ Read from the registry to obtain configuration information

■ Use Option Explicit to identify typing and spelling errors

■ Declare variables to identify which variables you intend to use

■ Use basic error handling to control execution of a script

■ Identify the four parts of a script

■ Produce output from your script for documentation purposes

■ Run scripts in six different ways

In this chapter, you begin your journey down the winding road that leads to the automation
of Microsoft Windows Server 2003, Windows XP, and Windows Vista. Your first step will be
to examine several scripts written in Microsoft Visual Basic, Scripting Edition (VBScript). On
the next part of your journey, you’ll dissect a few scripts so that you can see what elements
make up a script. Many of the concepts covered in this chapter will come up throughout this
book, as well as in your day-to-day life as a network administrator, so be sure you understand
the material here before moving on.

ing Your First Script
It is late at night and the cold air conditioning is drying out your eyes, making it impossible to
keep them open. You have drunk nearly a dozen cups of coffee, and you try to steady your
hands. The last item on your migration check-off list stares out at you eerily from the page:
“Ensure all servers have the administrator tools installed.” Slowly your predicament begins to
sink in, through the caffeine cloud surrounding your eyes. “I should have been doing this
hours ago.” The hum of the equipment room seems to grow louder, and the rows of servers
stretch for miles and miles. Supper is a distant memory and sleep a fleeting dream. “How in
the world am I supposed to check a thousand servers for administrator tools?”
3

4
Part I Covering the Basics

The darkness of foreboding doom begins to envelop you but then suddenly vanishes with a
single fulgurant idea: I bet we can script this! Within five minutes, the following script is tested
on a single server and works like a charm:

DisplayAdminTools.vbs
Set objshell = CreateObject("Shell.Application")

Set objNS = objshell.namespace(&h2f)

Set colitems = objNS.items

For Each objitem In colitems

WScript.Echo objitem.name

Next

Just the Steps To run an existing script

1. Open a command prompt. (From the Start menu, select Run\CMD.)

2. Change the directory to My Documents\Microsoft Press\VBScriptSBS\ch01.

3. Type CScript DisplayAdminTools.vbs and press Enter.

A good way to learn how to write scripts is to read scripts. So what is a script? For our pur­
poses, a script is nothing more than a collection of commands that we include in a text file. In
this regard, scripts are like batch files that many network administrators have used since DOS
days. Just like batch files, scripts can be written using nothing more sophisticated than
Microsoft Notepad. An important difference between a batch file and a script is that a script
has greater flexibility and its language is more powerful. In this section, you’ll look at several
scripts and learn to identify their common elements. I know some of you probably want to
start typing your first script, but be patient. In the long run, you’ll benefit from taking the time
now to understand the elements common to most enterprise ready scripts.

Just the Steps To open an existing script

1. Open Notepad.

2. From the File menu, choose Open. In the Files Of Type box, choose All Files from the
drop-down list.

3. Navigate to VBScriptSBS\Ch01\.

4. Select DisplayComputerNames.vbs, and choose Open from the Action menu.

After you open the script, the following text appears. We’ll be referring to it again in the next

few sections.

Head
5 Chapter 1 Starting from Scratch

Note DisplayComputerNames.vbs, seen in the following text, uses line continuation and
concatenation to fit the printed style. Line continuation is specified by a single underscore. Line
concatenation (glues two things together) is an ampersand character. They are often seen
together as &_, or as & _ the spacing between the ampersand and the underscore character is
a matter of personal preference. This is covered in more detail in the next section.

DisplayComputerNames.vbs
Option Explicit

On Error Resume Next

Dim objShell

Dim regActiveComputerName, regComputerName, regHostname

Dim ActiveComputerName, ComputerName, Hostname

regActiveComputerName = "HKLM\SYSTEM\CurrentControlSet\Control\" & _

"ComputerName\ActiveComputerName\ComputerName"

regComputerName = "HKLM\SYSTEM\CurrentControlSet\Control\" & _

"ComputerName\ComputerName\ComputerName"

regHostname = _

"HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Hostname"

Set objShell = CreateObject("WScript.Shell")

ActiveComputerName = objShell.RegRead(regActiveComputerName)

ComputerName = objShell.RegRead(regComputerName)

Hostname = objShell.RegRead(regHostname)

WScript.Echo ActiveComputerName & " is active computer name"

WScript.Echo ComputerName & " is computer name"

WScript.Echo Hostname & " is host name"

As you can see, this script contains a lot of information. Let’s break it down piece by piece so
that it’s not too overwhelming. For the purposes of our discussion, you can think of the script
as being made up of four main parts:

■ Header information

■ Reference information

■ Worker information

■ Output information

er Information

You can think of the header information as administrative overhead for your script. For most
scripts, you can leave out the Header information section and lose none of the functionality. In

fact, the preceding script would run just fine if the Header information section were deleted.
(And it just so happens that you’ll get a chance to prove this assertion during the step-by-step
exercises at the end of this chapter.) If this information is so unrelated to the script’s function­
ality, why should you include it? The header information should be a standard part of your
script for two reasons: It makes the script easier to read and maintain, and it controls the way

6
Part I Covering the Basics

the script runs (as opposed to the way it might run by default). You’ll learn more about how
it controls the script later in the chapter when we look at the Option Explicit command and the
On Error Resume Next command.

In the DisplayComputerNames.vbs script, the header information consists of the following
lines of code:

Option Explicit

On Error Resume Next

Dim objShell

Dim regActiveComputerName, regComputerName, regHostname

Dim ActiveComputerName, ComputerName, Hostname

Although this code might look complicated, in reality, only three different commands are
being used: Option Explicit, On Error Resume Next, and Dim. Each of these commands is cov­
ered in detail in the following sections, but before we dive into the nuts and bolts, let’s do a
quick reality check.

Quick Check

Q. What is one way to run a script written in the VBScript language?

A. Type CScript before the name of the .vbs file at the command prompt.

Q. What is one tool you can use to read the text of a .vbs file?

A. Notepad.

Q. What are three commands found in the Header information section of a script written
using the VBScript language?

A. Option Explicit, On Error Resume Next, and Dim.

Option Explicit and Dim

The Option Explicit statement tells the script that each variable used in the script is going to be
listed before it is actually used.

Note Not sure what a variable is? The official definition of a variable is a named storage
location capable of containing data that can be modified during program execution. For now,
however, it’s sufficient to think of a variable as a kind of “nickname” for a piece of information
stored in a script.
If you want to use a variable and you specify Option Explicit in the Header information section
of the script, you have to tell the script you’re going to use this variable before you actually use
it. This is called declaring a variable. If you omit Option Explicit, VBScript assumes by default
that any statement it doesn’t recognize is a variable. To declare a variable, you must use the

7 Chapter 1 Starting from Scratch

command Dim, as illustrated in the preceding code. We do not have to specify what kind of
information we are going to store in the variable, as VBScript treats everything as a “varient.”
In VB.NET, we would use the following command: Dim j as int. In VBScript, we just Dim j and
it is a varient, which means it can be anything from a string to a date. By treating everything as
a varient, VBScript is very easy to use. One problem that “scripters” have when transitioning
their VBScript code to VB.NET is the “as thing.” Dim j as WHAT? J is just a variable many
scripters often say because in VBScript we do not normally need to worry about data types.

This code has a whole bunch of Dim stuff. As mentioned in the preceding paragraph, you use
the word Dim to declare a variable. For instance, in the code at the end of this section, objShell
and all the other words (except for Dim) are variable names I made up. I could have just as eas­
ily used a, b, c, d, and so on as the variables’ names (kind of like the variables you used in high
school algebra) and saved myself a lot of typing. However, a good variable name makes the
code easier to read and to understand. For example, in the following code, you can assume
that the variable named ComputerName actually holds a computer name. (I think you’d agree
that ComputerName is much more descriptive than a.) And notice how similar regActiveCom­
puterName, regComputerName, and regHostname are (except for the reg part) to the following
variables: ActiveComputerName, ComputerName, and Hostname. The variables are arranged
according to how they will be used. That is, variables used to hold registry keys are on one
line, and variables containing the corresponding output values of those registry keys appear
on the next line.

Dim objShell

Dim regActiveComputerName, regComputerName, regHostname

Dim ActiveComputerName, ComputerName, Hostname

On Error Resume Next

What does On Error Resume Next sound like it’s trying to do? Let’s break it down. On Error
means that you want the computer to do something if it finds an error. Resume Next is what
you want it to do. But Next what? A very good question. The Next you want it to resume is the
next line of code in the script. So On Error Resume Next tells the computer that when some­
thing is messed up (causing an error), you want the computer to just skip that line and try the
next line in the script. This process is called error handling, and it’s a very basic task when writ­
ing scripts. You should probably consider using On Error Resume Next when you’re using
VBScript for logon scripts so that you don’t get lots of phone calls right at 9:00 A.M. when your
script has a problem. Of course, you’ll test the script prior to deploying it, but we all know that
tests don’t always catch every eventuality. You’ll learn about error handling in more detail
later, including some pretty cool tricks, so stay tuned.
Note Even though we show it here for a complete script, your best practice is to not use
On Error Resume Next while developing scripts; it will prevent you from seeing any errors
produced during normal script execution. If you are using it and a script fails to work the way you
expect, your first troubleshooting step should be to remove the On Error Resume Next statement.

8

Refer
Part I Covering the Basics

Quick Check

Q. For what purpose is Option Explicit used?

A. To inform VBScript that all variables will be declared prior to use.

Q. What functionality does On Error Resume Next provide?

A. Basic error handling.

Q. What is the command Dim used for?

A. To declare variables. Normally used when Option Explicit is used.

ence Information

The Reference information section of the script gives you the ability to assign values to the
variables you named in the Header information section of the script. Another reason for using
a variable is to create a shortened alias for some value. Aliases make the script easier to work
with. In the following code, values are assigned to some of the variables created in the Header
information section of the script.

regActiveComputerName = "HKLM\SYSTEM\CurrentControlSet\Control\" &_

"ComputerName\ActiveComputerName\ComputerName"

regComputerName = "HKLM\SYSTEM\CurrentControlSet\Control" &_

"\ComputerName\ComputerName\ComputerName"

regHostname = "HKLM\SYSTEM\CurrentControlSet\Services" &_

"\Tcpip\Parameters\Hostname"

Notice that everything on the right-hand side of the equal sign looks like a registry key. If you
caught that, you can probably figure out what the reg part of the variable name stands for. You
got it—registry! Did you also notice that the three variable names (on the left-hand sides of the
equal signs) are the same ones we talked about in the preceding section? What you’re doing
in this code is tying each of those variables to a registry key. For example, the first line of code
shows that regActiveComputerName is equal to the very long string HKLM\SYSTEM\Current-
ControlSet\Control\ComputerName\ActiveComputerName\ComputerName. (By the way, HKLM
is shorthand for HKEY_LOCAL_MACHINE. Because VBScript understands this abbrevia­
tion, using HKLM will save you some typing. But keep in mind that HKLM is case sensitive!
It must be all caps.) The lines containing the registry keys are using two special characters.
The & (ampersand) is the concatenation operator, and it is glue. When you use it you glue
two things together. The _ (space underscore) is used to continue the code to the next line.
This is necessary to make the code easier to read in the book. We talk about this in more

detail in Chapter 2, "Looping Through the Script."

Work
9 Chapter 1 Starting from Scratch

Getting the Proper Registry Key
One easy way to make sure you get the proper registry key for your scripts is to use the
Copy Key Name feature of the Registry Editor (Regedit.exe). As shown in Figure 1-1, you
select the registry key containing the information you want VBScript to extract, open the
Edit menu, and select Copy Key Name from the list. The entire key name is pasted on
the clipboard, and from there you paste it into your script.

Figure 1-1 Registry Editor Copy Key Name feature

The Reference information section has the following purposes:

■	 Minimizes typing, and therefore ensures accuracy. You have to type long strings only
once.

■	 Makes the script easier to read. If a variable is used several times in the script, the vari­
able is “referenced” to the actual item only once.

■	 Makes it easier to change the script later. For example, the sample script you’ve been
examining pulls out computer names. By changing the registry key and nothing else,
you can make the script pull out any other information in the registry.
er Information

The Worker information section of the script gets its name because it actually does something.
The variables are declared in the Header section and referenced in the Reference section; in
the Worker information section, the variables get busy.

10
Part I Covering the Basics

Note I haven’t yet explained WScript, which can also be used to create objects, or how to
create file system objects. These subjects are covered in later chapters. At this point, you should
focus on understanding the flow and the functionality of the script.

Let’s look at some code.

Set objShell = CreateObject("WScript.Shell")

ActiveComputerName = objShell.RegRead(regActiveComputerName)

ComputerName = objShell.RegRead(regComputerName)

Hostname = objShell.RegRead(regHostname)

Because you’ve read through the header information and looked at all the Dim statements,
you know which names in the preceding code are variables. For instance, objShell is a variable;
that is, it is shorthand for something. The question is, shorthand for what? Let’s walk through
the first line of code:

Set objShell = CreateObject("WScript.Shell")

Notice that the sentence begins with Set. Set is a command in VBScript that is used to assign
an object reference to a variable. For VBScript to be able to read from the registry, it must have
a connection to it. This requirement is similar to that for reading from a database—you must
first establish a connection to the database. To create an object reference, you use the Set key­
word to assign the reference to a variable.

VBScript uses automation objects as a way to use the capabilities of other programs to provide
more power to the system administrator who needs to create powerful scripts to manage
today’s complex networking environments. For example, instead of dumping output to a
black and white, text-only command prompt, you can use an automation object to leverage
the display and formatting capabilities of the products in the Microsoft Office system and cre­
ate multicolor, three-dimensional graphs and charts.

You are setting the variable name objShell to the reference you created by using CreateObject.
Notice the equal sign following objShell. It indicates that objShell should be equal to something
else—in this case, to everything to the right of the equal sign, or CreateObject("WScript.Shell").
For now, pay attention to the CreateObject part of the expression. The use of the verb Create is
a tip-off that some action is about to take place. As you’ll see in a moment, this line assigns to
objShell a connection that will enable the script to read the registry.

Objects, Properties, Methods

By itself, VBScript is rather boring. It can print out things, loop through some things, but
that is about it. To do anything interesting, VBScript needs to create an object. An object
is a thing that gives us the ability to either describe something or to do something. If we
are not going to do something, or describe something, then there is no reason to create

11 Chapter 1 Starting from Scratch

the object. In programming terms, we use “Methods” to do something. In grammar, we
would call these Verbs. We we describe something, we are using a “Property.” In gram-
mer, we would call these Adjectives. Depending on the circumstances, there may be
times in which we are more interested in the methods, or the properties. As an example,
let’s consider rental cars. I travel a great deal in my role as a consultant at Microsoft, and
I often need to obtain a rental car.

When I get to the airport, I go to the rental car counter, and I use the CreateObject com­
mand to create the rentalCAR object. When I use this command, I am only interested in
the methods available from the rentalCAR object. I will need to use the drive-
DowntheRoad method, the StopAtaRedLight method, and perhaps the PlayCoolMusic
method. I am not, however, interested in the properties of the rentalCAR object.

At home, I have a cute little sports car. It has exactly the same methods as the rentalCAR
object, but I created the sportsCar object primarily because of its properties. It is green
and has alloy rims, a convertible top, and a 3.5-liter engine. Interestingly enough, it has
exactly the same methods as the rentalCAR object. It also has the driveDowntheRoad
method, the StopAtaRedLight method, and the PlayCoolMusic method, but the decid­
ing factor in creating the sportsCar object was the properties, not the methods.

Note You might also see WScript.CreateObject used to create objects, instead of VBScript’s
plain CreateObject. For our purposes, and in about 99.9% of the cases, the two statements do
exactly the same thing: They create objects. I prefer the plain CreateObject command as it is
less typing!

You can now use the variables ActiveComputerName and regActiveComputerName to read the reg­
istry by taking advantage of the newfound power of the variable objShell. Remember that earlier
you defined regActiveComputerName as equal to the registry key that contains the active com­
puter name. You now define ActiveComputerName to be equal to the name that comes out of the
registry key when you read the registry. You do the same thing for the other two registry keys.

Let’s take a moment to recap what you’ve done so far. You’ve stored three computer names
into memory by using the variables named ActiveComputerName, ComputerName, and Host-
name. To get the computer names into those variables, you read the values that are stored in
three different registry keys on the computer. To do this, you created three variables named
regActiveComputerName, regComputerName, and regHostname. You used the prefix reg to
denote that the variables contain strings for the actual registry keys. You then used the

RegRead capability of the objShell variable that you assigned to the object reference by using
the CreateObject command. Now that you have this information stored into three variables,
you need to do something with it. In the script you are examining, you will use the output
capability of VBScript, described in the next section.

12

Outp
Part I Covering the Basics

ut Information

Being able to read from the registry, though cool, doesn’t do you much good when you can’t
use the information. That’s why it’s important for a script to have an Output section. Of
course, you can write a script that uses the information to perform tasks other than creating
output, such as monitoring the status of a service and restarting it when it fails, but even then
most network administrators would want at least a log entry stating that the service was
restarted. In our script, output is provided through a series of Echo commands. The use of the
WScript.Echo command is illustrated in the following code:

WScript.Echo activecomputername & " is active computer name"

WScript.Echo ComputerName & " is computer name"

WScript.Echo Hostname & " is host name"

The WScript.Echo command is used to type text inside a command prompt or to produce a
pop-up message box, depending on how the script is actually run. When the script is run by
using CScript, as detailed in the earlier procedure titled “Just the Steps: To run an existing
script,” the script writes inside the command shell.

Each variable name that you just set is equal to the registry key information in the last section
of our script. So what does Echo do? You guessed it—it repeats something. Because the vari­
ables are now linked to the strings contained within the registry keys (via the Reference infor­
mation section), we can use WScript.Echo to write the information currently held by the
variables. In the code, the ampersand (&), which simply means and, is followed by a phrase
within quotation marks. The current value of the variable on the left side of the ampersand
gets put together with the string value contained inside the quotation marks on the right side
of the ampersand. This “putting together” of two things with the ampersand is called concate­
nation. You are echoing what is stored in memory for each of our three variables, and you’re
also adding some text to explain what each variable is. When you run this script by double-
clicking the script, you’re rewarded with the results in Figure 1-2.

Figure 1-2 Screen output of DisplayComputerNames.vbs

Dealing with only three dialog boxes is a bit tedious, so imagine the frustration that dealing
with a thousand or even just a hundred dialog boxes could cause. Some scripts can easily
return a listing of more than a thousand items (for example, a script that queried all the users

in a medium-sized domain). Clearly you need a more efficient way to write data. In fact, you
have several ways to do this, such as using VBScript’s MsgBox to display a pop-up box con­
taining text, but I am going to save that for Chapter 2.

Enha
13 Chapter 1 Starting from Scratch

What Is the Windows Scripting Host?
The Windows scripting host is a language independent environment that exists on Win­
dows based machines. It gives us the ability to write administrative scripts in various
scripting languages. By default, Windows ships with a development environment for
both VBScript and JScript, but you can install other runtime engines if you wish.

Once a runtime engine is installed, the Windows scripting host will choose the appro­
priate engine for the script that is attempted to run. For VBScript, there are two script
hosts: Cscript.exe and Wscript.exe. Cscript.exe provides command line switches that
enable you to supply arguments to modify the way your script runs. Wscript.exe is the
default scripting host and provides Windows based dialog boxes.

ncing Your Script
You’ve worked your way through your first script, and now let’s see how we can modify it to
enhance its capabilities. Here is the new functionality you will add to your script:

■ Creating documentation that will keep track of what you learned in the previous section

■ Obtaining information in addition to the three computer names

Let’s first add some documentation to the script so that when you look at it six months from
now, you’ll know what you’re looking at.

To add documentation, you simply type information into the script. To prevent the script from
choking, you need to indicate that you are adding the text. You can do this in several ways. Per­
haps the most efficient way is to preface each note with a single quotation mark (') followed by
explanatory text (often called a comment).

If you are wondering what kinds of documentation you might want to include in your script,
you can refer to Appendix D, “Documentation Standards,” which provides guidance on the
kinds of information you may want to include in each of the four sections of the script.

Here’s what the script looks like with the added documentation:

DisplayComputerNamesWithComments.vbs
'This script displays various Computer Names by reading the registry

Option Explicit 'forces the scripter to declare variables

On Error Resume Next 'tells VBScript to go to the next line

'instead of exiting when an error occurs

'Dim is used to declare variable names that are used in the script

Dim objShell

Dim regActiveComputerName, regComputerName, regHostname

Dim ActiveComputerName, ComputerName, Hostname

14

Mod
Part I Covering the Basics

'When you use a variable name and then an equal sign (=)

'you're saying the variable contains the information on the right.

'The registry keys are quite long, so make them easier to read on

'a single screen by splitting the line in two.

regActiveComputerName = "HKLM\SYSTEM\CurrentControlSet" & _

"\Control\ComputerName\ActiveComputerName\ComputerName"

regComputerName = "HKLM\SYSTEM\CurrentControlSet\Control" & _

"\ComputerName\ComputerName\ComputerName"

regHostname = "HKLM\SYSTEM\CurrentControlSet\Services" & _

"\Tcpip\Parameters\Hostname"

Set objShell = CreateObject("WScript.Shell")

ActiveComputerName = objShell.RegRead(regActiveComputerName)

ComputerName = objShell.RegRead(regComputerName)

Hostname = objShell.RegRead(regHostname)

'To make dialog boxes you can use WScript.Echo

'and then tell it what you want it to say.

WScript.Echo activecomputername & " is active computer name"

WScript.Echo ComputerName & " is computer name"

WScript.Echo Hostname & " is host name"

Just the Steps To add documentation to a script

1. Open the script in Notepad.

2. Preface the line with a single quotation mark (').

3. On the first line of script, after the single quotation mark, type a short description of the
script’s purpose.

4. Save the script.

ifying an Existing Script
Now that your script is fully documented, you can modify it to pull in additional information.
Thus far, you have learned to retrieve the active computer name, the host name, and the com­
puter name. (Actually, these names could be different in certain situations, so this script really
is useful.) What kind of information could you be interested in retrieving at this juncture?
Look at Table 1-1 for some ideas. (Notice in Table 1-1 that the registry keys are spelled out
completely—HKEY_LOCAL_MACHINE, for instance—and the script you worked on earlier
was abbreviated HKLM. VBScript allows you to reference the registry using several forms.

These forms are covered in depth in Chapter 17, “Working with the Registry.”)

Modi
15 Chapter 1 Starting from Scratch

Table 1-1 Useful registry keys for script writers

Information Location

Service information HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

User name used to log on HKEY_CURRENT_USER\Software\Microsoft\Windows\
to the domain CurrentVersion\Explorer\Logon User Name

Microsoft Exchange 2000 HKEY_CURRENT_USER\Software\Microsoft\Exchange\
domain information LogonDomain

Exchange 2000 domain user HKEY_CURRENT_USER\Software\Microsoft\Exchange\UserName
information

Group Policy server HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Group Policy\History\DCName

User’s home directory HKEY_CURRENT_USER\Volatile Environment\HomeShare

The server that authenticated HKEY_CURRENT_USER\Volatile Environment\LOGONSERVER
the currently logged-on user

The DNS domain name of HKEY_CURRENT_USER\Volatile Environment\USERDNSDOMAIN
the currently logged-on user

Note Much of the information that you can gather via the registry can be obtained by other
approaches, such as using Active Directory Service Interface (ADSI) or Windows Management
Instrumentation (WMI) (which you’ll learn about in later chapters). These are two other ways
you can use the power of VBScript to gather information you need to manage your network.
You should be aware of this because the registry is a dynamic environment, and keys get
moved around from time to time. Thus, the registry is not always consistent among all
machines on the network. For instance, there are obviously differences between Microsoft
Windows 95 and Microsoft Windows XP, but there are also differences between Microsoft Win­
dows 2000 and Windows XP, and even between Windows XP and a version of Windows XP that
has been upgraded from Microsoft Windows Me, for example. Mining information from
sources other than the registry can ensure a more consistent result. If at all possible, only try to
read the registry for items that cannot be obtained via other methods.

To modify your script to gather some of the information listed in Table 1-1, you need to make
a few changes in each of its four sections. Much of your script will be exactly the same, and a
few sections will be similar (meaning that you’ll need to change a few names to ensure clarity
in your documentation). Now you’ll look at each section of your script to see what needs to be
changed.

fying the Header Information

The first three lines of your script can remain exactly the same. You still want to make sure you

specify which variables you plan to use in the script, so leave Option Explicit. You also don’t
want the script to blow up when a value is absent or some other problem arises, so leave On
Error Resume Next in place. In addition, because you’re connecting to the registry to read
items, you’ll need the objShell variable in place. There is really no point in renaming these vari­

16

Modi
Part I Covering the Basics

ables or changing them in any other way. By keeping the same name for objShell, for example,
you’ll always know its purpose. In this respect, you are developing your own naming conven­
tion for your scripts.

Option Explicit

On Error Resume Next

Dim objShell

The first three lines are in place and working fine, so now you need to create variables that you
will use for the new registry values you want to read. For this example, we use some (but not
all) of the values identified in Table 1-1. These variables are here:

Dim regLogonUserName, regExchangeDomain, regGPServer

Dim regLogonServer, regDNSdomain

Dim LogonUserName, ExchangeDomain, GPServer

Dim LogonServer, DNSdomain

Notice that we use our previous naming convention: We preface with reg all names of vari­
ables that will hold registry keys, and we leave reg off the names of all variables that will hold
the information contained in the registry keys. (The variable item names are the same except
for reg.)

Just the Steps To modify the header information

1. Open Notepad.

2. Ensure Option Explicit is listed on the first non-commented line.

3. Ensure On Error Resume Next is listed.

4. Delete variables that are not required.

5. Add variables for new information.

6. Add comments describing use of the newly added variables.

7. Save the script with a new name.

fying the Reference Information

Because you are changing the registry keys you will pull information from, you’ll need to com­
pletely replace the Reference information section. The good news is that the format for the
section is exactly the same. The pattern looks like this:

Variable name = Registry key in quotation marks
regLogonUserName = “HKEY_CURRENT_USER\Software\Microsoft\“ & _“Windows\
CurrentVersion\Explorer\Logon User Name”

There are three parts of the script involved in reading a registry key, and all the information we
want to obtain can be easily modified by changing the assignment of values to the variable

17 Chapter 1 Starting from Scratch

names listed in the preceding syntax example. In addition, because you listed all the variable
names we want to use to hold the registry keys in the Header information section of the script,
you can simply cut and paste the variables into the Reference information section. In the next
listing, you remove the Dim portion and the commas and place each variable name on a sep­
arate line. You will start with the code listed below:

Dim regLogonUserName, regExchangeDomain, regGPServer

Dim regLogonServer, regDNSdomain

Once you have finished cleaning up the variable names, your resulting code will look like Fig­
ure 1-3.

Figure 1-3 Using Notepad to speed script modification

After the variable names and the equal signs are inserted, add each registry key and enclose it
in quotation marks. Remember to use the copy key feature of Regedit. Once all the registry
keys are pasted into the script, the modified Reference information section looks like the fol­
lowing listing. Remember that the ampersand and underscore are used to indicate line contin­
uation and are included here for readability. I also include them in production scripts to avoid
having to scroll to the right while revising code.

regLogonUserName = "HKEY_CURRENT_USER\Software\Microsoft\" & _

"Windows\CurrentVersion\Explorer\Logon User Name"

regExchangeDomain = "HKEY_CURRENT_USER\Software\Microsoft\" & _

"Exchange\LogonDomain"

regGPServer = "HKEY_CURRENT_USER\Software\Microsoft\Windows\" & _

"CurrentVersion\Group Policy\History\DCName"

regLogonServer = "HKEY_CURRENT_USER\Volatile Environment\" & _

"LOGONSERVER"

regDNSdomain = "HKEY_CURRENT_USER\Volatile Environment\" & _

"USERDNSDOMAIN"

Just the Steps To modify the reference information
1. Open Notepad.

2. Copy the Dim section of the header information.

3. Paste the Dim section from step 2 into a new Notepad file.

18

Modi
Part I Covering the Basics

4. From the Edit menu, select Replace to display the Replace dialog box. In the Find What
box, type Dim. Do not type anything in the Replace With box. This will erase all occur­
rences of the word Dim.

5. Place each variable on a separate line and remove the commas.

6. Open Regedit and locate the desired registry keys.

7. Using the Copy Key Name feature, paste the key after each variable name.

8. Ensure the variable name is separated from the registry key name with an equal sign.

9. Ensure the registry key name is enclosed in quotation marks.

10. Save the script.

fying the Worker Information

You are halfway through creating the new script. The first line in the Worker information sec­
tion of the script is fine and does not need to be changed.

Set objShell = CreateObject("WScript.Shell")

Notice that same two variables listed in the third line of the Header information section are
used here. The challenge now is to modify each line so that it assigns the variables you created
without the reg prefixes to the variables you created with the reg prefixes. This command has
four parts associated with it:

Variable name = Worker Registry variable in ()

LogonUserName = objShell.RegRead (regLogonUserName)

Here’s the entire Worker information section of the new script:

LogonUserName = objShell.RegRead(regLogonUserName)

ExchangeDomain = objShell.RegRead(regExchangeDomain)

GPServer = objShell.RegRead(regGPServer)

LogonServer = objShell.RegRead(regLogonServer)

DNSdomain = objShell.RegRead(regDNSdomain)

The variables were all listed in the Header information section and were copied and pasted on
separate lines in this section of the script without the Dim statements—just as we copied and
pasted information for the Reference information section of our script. In the next part of the
script, insert the equal sign and the same worker component (you always do this), which in
this case is objShell.RegRead. The last part of the script contains the registry variable created in
the Reference section enclosed in parentheses. This again can be a really quick cut and paste

job from the Reference information section.

Modi
19 Chapter 1 Starting from Scratch

Just the Steps To modify the Worker information section

1. Open Notepad.

2. Copy the Dim section of the header information.

3. Paste the Dim section from step 2 into a new Notepad file.

4. From the Edit menu, select Replace to display the Replace dialog box. In the Find What
box, type Dim. Do not type anything in the Replace With box. This will erase all occur­
rences of the word Dim.

5. Place each variable on a separate line and remove the commas.

6. Paste an equal sign and the worker component objShell.RegRead onto each line.

7. Paste the appropriate variable from the Reference information section and enclose it in
parentheses.

8. Save the script.

Note I tend to use the cut and paste feature when working with scripts because some of the
variable names I create are a little long. Although the names are typically not case-sensitive, for
the most part spelling counts, to rephrase something I learned in first grade. The best way I’ve
found to avoid messing up the script is to copy and paste the variable names between my
Header information section and my Worker information section.

After you finish modifying the Worker information section of your script, double-check that
all declared variables are in place and that everything else is accounted for. Save your script
under a different name if you were editing the DisplayComputerNames script. You could try
to run it, but it won’t do too well because you need to change the last section—the Output
information section.

fying the Output Information

The Output information section of the script takes what you’ve learned from the registry and
displays it in an easy-to-understand format. This section is what really makes the script usable.
It’s amazing that we spend a lot of time figuring out how to find information but not too much
time formatting the data we get. You’ll beef up your knowledge of displaying and writing data
quite a bit in later chapters. For now, you’ll use WScript.Echo to bounce data back.

You can’t really salvage much from the old script—the process would be too confusing because
you’d have to change every variable that holds information from the registry, as well as all the

comments added after the keys. So all you will keep are the WScript.Echo lines. Delete every­
thing after WScript.Echo and start cutting and pasting. Make sure you include every variable
name identified in the Worker information section of the script. The syntax for this section is
made up of four parts and looks something like this:

20
Part I Covering the Basics

Command Variable & Comment

WScript.Echo LogonUserName & “ is currently Logged on”

Notice that there’s a space after the first quotation mark in the comment section. You include
the space because the ampersand is used to glue two phrases together, and VBScript does not
add spaces when concatenating lines. Our new code section looks like this:

WScript.Echo LogonUserName & " is currently Logged on"

WScript.Echo ExchangeDomain & " is the current logon domain"

WScript.Echo GPServer & " is the current Group Policy Server"

WScript.Echo LogonServer & " is the current logon server"

WScript.Echo DNSdomain & " is the current DNS domain"

To put this section together, you just cut and paste each variable assigned to a registry key in
the Worker information section of the script, add an ampersand, and put quotation marks
around whatever text will be echoed out. Later on, you’ll use WScript.Echo to troubleshoot
problems because it’s an excellent way to follow progress in a script.

Just the Steps To modify the Output section

1. Open Notepad.

2. Copy each variable added to the Worker information section.

3. Paste the variables from step 2 into the Output information section.

4. Add an ampersand after each variable.

5. Place quotation marks around any text to be echoed out to the screen.

6. Paste an equal sign and the worker component objShell.RegRead onto each line.

7. Preface each line with WScript.Echo.

8. Save the script.

How to Run Scripts
You can run scripts in several ways on Windows Server 2003, each of which has advan­
tages and disadvantages. Let’s look at some of these approaches now.

Double-Clicking a File with a .vbs Extension
By default, when you double-click a file with a .vbs extension, the file runs within an
instance of WScript.exe. Therefore, using WScript.Echo in the Output information sec­
tion of the script results in the cute little pop-up boxes. This might not be a big deal
when we’re talking about two or three variables, but it can be a real pain when one is list­

ing all the user names in a domain with thousands of users! Perhaps a better alternative
is the CScript approach.

21 Chapter 1 Starting from Scratch

CScript
CScript can be thought of as the command-line version of the Windows Scripting Host
(Figure 1-4). CScript is nice because you don’t have to click any dialog boxes to make the
script continue. (Yes—that’s right—with the default Windows Scripting Host, the entire
script pauses until you click OK in the dialog box, and then the script waits for you to do
the same in each dialog box after that.) In addition, you can pretty easily capture output
from CScript because you can enable Quick Edit mode from the command window. To
do this, click C:\ in the upper left part of the window, and select Properties from the
Action menu. Then click the Options tab and select the Quick Edit Mode box. Next,
choose Save Properties For Future Windows Of The Same Title, and you’re finished. This
feature enables you to highlight text and copy it to the clipboard from the CMD window.
Once the data is on the clipboard, you can do everything from pasting the data into Note-
pad to using the text driver for Microsoft Excel and sorting the data into various cells that
you can use to produce graphs. You’ll learn more about this feature later in the book.

Figure 1-4 CScript offers many options, which can be set from the command line

Embedding Scripts in Web Pages
You can embed scripts inside Web pages. This has some potential use in the enterprise
environment in which users who have access to a particular Web site on the intranet can
click a button to launch a particular script. This might be a useful and valid use of
VBScript for, say, information gathering or troubleshooting. There are some security
concerns, however, which you’ll learn about later in the book.

Dragging and Dropping a .vbs File to an Open Command Prompt
You can drag and drop a .vbs file to an open command prompt, which launches the
script with the default scripting host. The nice thing about this is that you do not have
to type the path to the file because Windows Explorer automatically puts it onto the
command prompt line.
Dragging and Dropping a .vbs File to Notepad
You can drag and drop the .vbs file to an open Notepad file with a blank page to auto­
matically open the file and display the text.

22

Expl

One

Scena
Part I Covering the Basics

Adding Notepad to the SendTo Menu
You can easily edit the script by opening it in Notepad. Just add Notepad to the SendTo
menu by going into C:\Documents and Settings\%USERNAME%\SendTo and adding a
shortcut to Notepad.exe.

oring a Script: Step-by-Step Exercises
In this section, you will explore the four parts of a script written in VBScript language. This
section also provides practice in using comments to add notes to an existing script.

1.	 Open ExploringVBS.vbs in Notepad.exe. It is located in the My Documents\Microsoft
Press\VBScriptSBS\ch01\StepByStep folder.

2.	 Add comments that identify each section of the script. (Make sure to include all four
parts of the script: header information, reference information, worker information, and
output information.)

3.	 Save the script with a different file name, such as YourNameExploringVBS.vbs.

4.	 Delete the entire Header information section.

5.	 Save the script and then try to run it. Does it run?

6.	 Add the Option Explicit command again and save the file. Now does it run?

7.	 Put a comment mark (') in front of Option Explicit and save the file. Does it run?

Step Further: Customizing an Existing Script
This section will provide addional practice and illustrate the important technique of custom­
izing an existing script. It is common knowledge that when confronted with the task of creat­
ing a script, most network administrators often start with a script they found on the Internet.
It is, however, important for the administrator to customize the script and ensure that only the
most useful portions of the script are left behind prior to deployment.

rio

You are a new network administrator at a Fortune 500 company. You recently had a server
crash, and it did not generate a dump file. Because you have several servers on your network,
you don’t want to have to “mouse around” very much; rather, you’d like to simply run a script

to confirm the crash recovery configuration. Because your company is fortunate to have a col­
lege intern working for the summer, and you haven’t yet learned how to remotely run the
script, you’ve decided to do the following:

23 Chapter 1 Starting from Scratch

1.	 Create a script that reads crash recovery information from the registry. Your research has
revealed the following keys to be of interest:

"HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\AutoReboot"

"HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\MinidumpDir"

"HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Hostname"

"HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\LogEvent"

"HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\DumpFile"

2.	 Copy the script to a share on a local server.

3.	 Run the script under CScript.

4.	 Have the intern copy the output from the command prompt and paste it into a Notepad
file that has the same name as the server.

Step-by-Step Instructions

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch01\OneStepFurther\Cus­
tomizeExistingScript.vbs file and save it as YourNameCustomizeExistingScript.vbs.

2.	 Edit the Header information section of the script and include variables for each of the
items you are going to read from the registry. (Remember, you’ll need two variables for
each registry item: one for the registry key itself, and one for the data contained in the
registry key.)

3.	 Edit the Reference information section of the script. (Use the reg variable names you cre­
ated in step 2 of this procedure and assign them to the appropriate registry keys.)

4.	 Edit the Worker information section of the script. (Assign the non-registry variable

names you created in step 2 to the regRead Worker part of the script.)

5.	 Edit the Output information section of the script. (Use the same variables you assigned
to the regRead parts in step 4.)

6.	 Add any documentation you need to the script. (Make sure you over-comment your
script. Concepts that are perfectly clear today will be a dull memory within a few days.)

7.	 Save your script.

8.	 Open a command prompt.

9.	 Type CScript YourNameCustomizeExistingScript.vbs and press Enter. (If you get a
File Not Found comment, change to the directory where you saved your script and
repeat the command.)

24
Part I Covering the Basics

Chapter 1 Quick Reference

To Do This

Catch misspelled variable names Use Option Explicit on the first line of your script

Declare a variable Use the Dim command, followed by the variable
name

Continue to the next line, following an error Use On Error Resume Next

Produce a pop-up dialog box when you Use WScript.Echo
double-click on a script

Produce a line of output when running a Use WScript.Echo
script under CScript at a CMD prompt

Create an object Use the CreateObject command followed by the
name of the automation object to create

Run a script under the default scripting host Double-click on the script

Run a script under CScript Open a CMD prompt and precede the name of
the script with the command CScript

Add documentation to a script Precede the comment with a single quotation
mark '

Add
Chapter 2

Looping Through the Script

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from Chapter 1:

■ How to run a script

■ How to declare a variable by using the Dim command

■ How to perform basic error suppression by using On Error Resume Next

■ How to connect to the file system object

■ How to read from the registry

After completing this chapter, you will be able to:

■ Use For Each…Next

■ Define constants

■ Implement collections

■ Use For…Next

■ Control script execution by using the Sleep command

■ Implement line concatenation

■ Use Do While…Loop

■ Use Do Until…Loop

ing Power to Scripts
Reading the registry and echoing the results on the screen are useful tasks. At times, however,
you need to perform repetitive operations. Even the most casual observer knows that network
administration involves many tasks performed over and over again.
How can you harness the power of Microsoft Visual Basic, Scripting Edition (VBScript) to
relieve some of the banality of day-to-day network administration on Microsoft Windows
Server 2003? At least six constructs are ideal for the task:

■ For Each…Next

25

26

For E
Part I Covering the Basics

■ For…Next

■ Do While…Loop

■ Do Until…Loop

■ Do…Loop

■ While…Wend

This chapter begins by examining a real script to see how you can use these powerful tools in
your daily duties as a network administrator.

ach…Next
For Each…Next lets you walk through a collection of objects and do something with an indi­
vidual object from the collection. Once it is done, it goes to the next object in the collection. It
is impossible to overemphasize how important this structure is. It is basic to working with
information retrieved from Windows Management Instrumentation (WMI, see Chapter 8,
“Using WMI”). But there are other common situations where you will be using For Each...
Next as well: files, and folders are returned as a collection from the fileSystemObject as well.
Whenever you hear the word collection, think For Each…Next.

In the CollectionOfDrives.vbs script, you use For Each…Next to examine disk space utilization
of fixed drives on a server:

CollectionOfDrives.vbs
Option Explicit

On Error Resume Next

Dim colDrives 'the collection that comes from WMI

Dim drive 'an individual drive in the collection

Const DriveType = 3 'Local drives. From the SDK

set colDrives =_

GetObject("winmgmts:").ExecQuery("select size,freespace " &_

"from Win32_LogicalDisk where DriveType =" & DriveType)

For Each drive in colDrives 'walks through the collection

WScript.Echo "Drive: " & drive.DeviceID

WScript.Echo "Size: " & drive.size

WScript.Echo "Freespace: " & drive.freespace

Next

Let’s peruse this script and see what it’s doing. In your initial reading, you see some common
elements you learned about in Chapter 1, “Starting from Scratch”: the Header information sec­

tion of the script (Option Explicit, On Error Resume Next, and Dim); and the Reference section
(the part with Const DriveType). The Worker section of the script contains the GetObject state­
ment. Because Windows Management Instrumentation (WMI) is already running, we do not
need to create an instance of the WMI object (by using CreateObject); we can simply go get it
by using GetObject. The Output section consists of the WScript.Echo statements. By examining

Head
27 Chapter 2 Looping Through the Script

the structure of the script, we get a sense of familarity, even though the script introduces a
number of new concepts, such as WMI, collections, and the For Each…Next statement.

Just the Steps To use For Each…Next

1. On a new line in a script, type For Each and then a variable name.

2. On the next line, enter a command you want repeated.

3. On the line following the command you want repeated, type Next.

er Information

The Header information section of your script contains commands that are rapidly becoming
old hat:

Option Explicit

'On Error Resume Next

Dim colDrives

Dim drive

This script begins by using Option Explicit, which says that each variable must be specifically
listed (declared) by using the Dim command. On Error Resume Next is a rudimentary error
handling technique that says “when an error occurs, skip the line that caused the problem
and go on to the next line in the script.”

Defining Constants

The Const DriveType = 3 line is a new concept. In this line, you define a constant. This line says
that the word DriveType is equal to the number 3. Why do you do this? You want to use the
number 3 later in the script when you build the WMI query. Rather than hard-coding the
number 3 into your query (hard-coding a value into a script is called creating a literal), you
replace it with the constant DriveType. Just like a variable, the constant can be called anything
you want. But because WMI uses a number to refer to the type of drive, you call the constant
DriveType. The most important thing to remember about a constant is that the value never
changes—it is constant.

Constants vs. Variables
Why did we use a constant instead of a variable in the CollectionOfDrives.vbs script?
This is a good question, and the answer is that you could have used a variable in this

instance. It would look something like this:

Dim colDrives 'holder for what comes back from the WMI query

Dim drive 'holder for name of each logical drive in colDrives

Dim DriveType

DriveType = 3 'Local drives. From the SDK

28
Part I Covering the Basics

In this particular case, using a variable instead of a constant wouldn’t have made any dif­
ference. However, variables have a dark secret that will come back to haunt you one day
(guaranteed). Their value can change during script execution, whereas the value of a
constant is set before execution and cannot change. This is illustrated in the following
rather silly script. First is the normal Header information section: Option Explicit, On
Error Resume Next, and a few Dim statements to declare the variables. Next, in the Refer­
ence section, you assign values to each variable and echo out the total. So far so good.
However, you then reassign the FirstValue to be equal to the total, and echo out the total.
Because the variable total is assigned to FirstValue + SecondValue before the FirstValue is
reassigned to the total, the script produces illogical results. If you added Total =
FirstValue + SecondValue right before the second echo, the script would work as
expected.

Option Explicit

On Error Resume Next

Dim total

Dim FirstValue

Dim SecondValue

FirstValue = 1

SecondValue = 3

Total = FirstValue + SecondValue

WScript.Echo " the total of " & FirstValue & " and " & _

SecondValue & " Is " & (total)

FirstValue = Total

WScript.Echo " the total of " & FirstValue & " and “ & _

SecondValue & " Is " & (Total)

Shared Benefits of Constants and Variables
You gain several advantages by using either a constant or a variable:

■ The script is easier to read. When you read the WMI query, notice that you’re filter­
ing by DriveType. This makes more sense than filtering out number 3 drive types.

■ The script is easier to revise. To change the script to filter out CD-ROMs, simply
change the constant to the number 5.

Important The ease of modifying the value of the constant in the reference
section points out the advantage of calling our constant DriveType instead of
something like LocalDisk, or FixedDisk. If we did this, then we would need to revise
the constant name, and every place in the script that referenced that constant, or

else the script would be misleading. Can you imagine the confusion a constant
called LocalDisk would have if you set the value to 4, which refers to network
disks? The script would still run fine, because as William Shakespeare said, “A con­
stant by any other name is still a constant.”

29 Chapter 2 Looping Through the Script

■ Reusing the value in the script later on is easier. This script does not reuse the con­
stant DriveType. However, you’ll do this in longer scripts, and using constants is a
good habit to get into.

■ The script is easier to document. You can easily add a comment or a series of com­
ments such as the following:

Const DriveType = 3 'used by WMI for fixed disks

'other drive types are 2 for removable,

'4 for Network, 5 for CD

After the constant is defined, you list a couple of variables used by the script. In this case, you
declared two. The first one is colDrives. Now, why did you call this colDrives? Because the
WMI query returns a collection of drives. Let’s look at collections and see what they do for
you. But before we do, let’s stop and see how we are doing.

Quick Check

Q. Name one advantage of using For Each…Next.

A. Using this construct provides the ability to iterate through a collection without knowing
the number of members in advance.

Q. What is the difference between a variable and a constant?

A. A variable can change value, whereas a constant retains a constant value.

Q. List three reasons for using constants.

A. Using constants makes the script easier to read and easier to revise. Reuse later in the
script is also easy.

Collections
When you have the possibility of seeing a group of related items, thinking of them as a
collection is useful. A collection is a familiar concept. For instance, my wife has a collection
of key chains. Although each of the key chains is different (some have city names, some
have college names, and others have product names), they are also similar enough to be
in her collection called key chains. That is, they all have a ring on which keys are hung—
without that common feature, they would not be key chains. In a similar fashion, when
you run your script, the script will return all the permanently fixed hard disk drives on
the server. These drives might be IDE or SCSI, but they will all be hard disk drives.
What’s so great about having a collection of hard disks? Consider the alternative. If you
couldn’t return a collection of hard drives from a server, you’d need to know which
drives are actually installed on the machine. You’d have to connect to the server and list
information for each drive—for example, you’d need to connect to drives A, C, D, E, F,
and so on. In addition, to keep the script from failing when a drive did not exist, you’d

30

Refer

Work
Part I Covering the Basics

need error handling (such as On Error Resume Next), or you’d have to test for the pres­
ence of each drive prior to querying information about it. Although that approach would
work, it would be kludgy, to say the least. It would also defeat the purpose of using auto­
mation to retrieve information related to drives.

There is only one bad thing about collections: You cannot simply perform a
WScript.Echo of the information returned from a query, because each drive in the collec­
tion could have different properties. For example, if I wanted drive.size, which size
would be returned from the echo command? To retrieve drive.size, we need to singular­
ize a drive from the collection, so that we are working with only one drive from the col­
lection at a time. To do this, you have to do something like a For Each…Next loop and go
through the loop as many times as there are items in the collection. If you had five drives
in your collection, guess what? We, in our current script, make five passes through the
loop and echo each of the drives out. Walking through the loop multiple times, once for
each member of the collection, is called iteration and is a task routinely performed in
administrative scripting.

If you have only one drive, guess what? It’s still returned as a collection, and you have to
iterate through the collection using For Each…Next to get out your single drive. Fortu­
nately, by the end of this chapter, you’ll have so much experience doing this, it will seem
like a piece of cake (or a piece of celery, if you’re on a diet like I am).

ence Information

In the Reference information section of the script is a new concept mentioned earlier—WMI.
We’re using it here to look at our drives, but you’ll learn more about WMI later in this chapter.
To connect to WMI, you have to use a string that looks like GetObject("winmgmts:"). Then you
simply run a query that selects the desired drives. Remember that in the Reference informa­
tion section of our script, you say that colDrives is equal to all the information on the right side
of the equal sign. You are creating an alias for the long winmgmts connection string that we call
colDrives. You can see this in the following code:

Set colDrives =_

GetObject("winmgmts:").ExecQuery _

("select DeviceID from Win32_LogicalDisk where DriveType =" & _

DriveType)

er Information

The Worker information section is really small in this script. In addition, the Output informa­

tion section is sandwiched inside the For Each…Next loop. Let’s look at the code:

For Each drive In colDrives

WScript.Echo drive.DeviceID

Next

For…
31 Chapter 2 Looping Through the Script

Because you sent a fine-tuned query to WMI in the Reference information section of the script,
and the purpose of the script was simply to list drives, the Worker information section has lit­
tle work to do. All it really needs to do is to walk through the collection of drives returned
from WMI. You use For Each and then the variable drive that you created to hold each of the
drives returned from colDrives. Once you have the drive in your hands, you look for the Device
ID of the drive. But, interestingly enough, you use this in the Output information section of
the script, which is the WScript.Echo part. After you echo the DeviceID, you use the Next com­
mand to do it again for the next drive in the collection.

Next
I know what you’re thinking: “We just got finished looking at For…Next!” Well, sort of, but not
really. An important difference between For Each…Next and For…Next is that with For
Each…Next, you don’t have to know how many times you want to do something. With the
For…Next construct, you must know exactly how many times you want to do something.

Just the Steps To implement For…Next

1. On a new line in the script, type i followed by a variable and a count (such as
For i = 1 to 10).

2. On the next line, type the command to be performed.

3. On the next line, type Next.

Using For…Next is not necessarily a bad thing, however, because it gives you a lot of extra
control. For example, the DisplayProcessInformation.vbs script checks a number of perfor­
mance indicators on the server (that is, process thread counts, page faults, working set sizes,
and the like).

Warning Make sure you run the DisplayProcessInformation.vbs script under CScript, or you
will find yourself clicking an incredible number of dialogue boxes. To launch it under CScript,
remember to go to a CMD prompt, and type cscript DisplayProcessInformation.vbs.

The values for these items can change quite often, so you want to check them on a regular
basis. However, frequent checking can cause a performance hit on either the server or the net­
work (depending on how the script was utilized), so you want to check the status only at cer­
tain times. The solution here is to take measurements of all the running processes, then wait

an hour and do it again. You do this for an eight-hour cycle and then quit. You could use this
type of script to monitor performance on a server that was heavily used during working hours.

32

Head
Part I Covering the Basics

Important In many of the scripts, you will note that I have On Error Resume Next com­
mented out. This is due to the “best practice” of having it turned off during development. You
want to see all errors while you are writing the script, so you can fix any problems that may arise.

DisplayProcessInformation.vbs
Option Explicit

'On Error Resume Next

Dim objWMIService

Dim objItem

Dim i

Const MAX_LOOPS = 8, ONE_HOUR = 3600000

For i = 1 To MAX_LOOPS

Set objWMIService = GetObject("winmgmts:").ExecQuery _

("SELECT * FROM Win32_Process where processID <> 0")

WScript.Echo "There are " & objWMIService.count &_

" processes running " & Now

For Each objItem In objWMIService

WScript.Echo "Process: " & objItem.Name

WScript.Echo Space(9) & objItem.commandline

WScript.Echo "Process ID: " & objItem.ProcessID

WScript.Echo "Thread Count: " & objItem.ThreadCount

WScript.Echo "Page File Size: " & objItem.PageFileUsage

WScript.Echo "Page Faults: " & objItem.PageFaults

WScript.Echo "Working Set Size: " & objItem.WorkingSetSize

WScript.Echo vbNewLine

Next

WScript.Echo "******PASS COMPLETE**********"

WScript.Sleep ONE_HOUR

Next

er Information

Our Header information section begins with the Option Explicit command that tells VBScript
that all our variables will have to be formally announced by using the Dim command. One issue
to keep in mind about Option Explicit is that it must be the first non-commented line in the
script. For instance, in the electronic version of the next script (found on the companion CD),
notice that several lines have been commented out by using the single quotation mark charac­
ter ('). These lines are used to tell basic information about the purpose of the script, provide
documentation on the use of various variables, and explain some of the syntax peculiarities.

Once all that work is done, the first line without a single quotation mark must be Option
Explicit if you want Option Explicit to work. The reason for this is that when the line without

the single quotation mark is not the first line in the script, some variables can sneak in with­
out being declared. On Error Resume Next uses the second line in our script. As you no doubt
have noticed, On Error Resume Next and Option Explicit seem to appear in all scripts. If you
were going to create a template for script creation, Option Explicit and On Error Resume Next
would be a couple of good lines to include, because more than likely you’ll want them in all

Refer
33 Chapter 2 Looping Through the Script

your scripts. However, you might want to comment out the On Error Resume Next line by plac­
ing a single quotation mark in front of it. In this way, while you are writing and testing your
script, you will be able to catch all the errors, because On Error Resume Next is turned off. Once
testing is completed, you simply remove the single quotation mark from in front of On Error
Resume Next, turning it back on. This has the advantage of hiding unexpected errors from the
“end user” of the script once it moves from development to “production.”

This script has only three variables: objWMIService, which is used to hold the connection to
WMI, allowing you to query for performance information about the running processes;
objItem, which is used to hold the name of each process that comes back from objWMIService;
and lastly i, which is one of the weird little variables used to increment the For…Next loop.
Because i is, however, a variable, and you turned on Option Explicit, you need to declare it by
using the Dim command.

ence Information

The Reference information section of the DisplayProcessInformation.vbs script contains two
constants: MAX_LOOPS and ONE_HOUR. MAX_LOOPS is used by the For…Next statement to
control how many times the script will execute. On this line in the script, we have done some­
thing new: We put two constant statements on the same line, just like you can do when you
dim variables. This is seen here:

Const MAX_LOOPS = 8, ONE_HOUR = 3600000

This is the same as doing the following (the advantage is that it saves space):

Const MAX_LOOPS = 8

CONST ONE_HOUR = 3600000

You define a constant named ONE_HOUR and set it equal to 3,600,000. You’re going to use
this constant in conjunction with the Sleep command, which counts in milliseconds. To calcu­
late, you’d multiply 60 minutes by 60 seconds, and then multiply the result by 1,000, which
yields 3,600,000. By defining the ONE_HOUR constant, you make the script easier to read. In
addition, you might want to add several other constants in the script, such as HALF_HOUR,
QUARTER_HOUR, and FIVE_MINUTES, and then you could easily change the sleep timeout
value later in the script. Defining constants but not using them in the script doesn’t adversely
affect the running of the script, because you comment them to that effect.

Adding additional constants

1.	 Open Microsoft Notepad.
2.	 From the File menu, choose Open. In the Files Of Type box, choose All Files from the
drop-down list.

3.	 Navigate to My Documents\Microsoft Press\VBScriptSBS\Ch02\.

4.	 Select DisplayProcessInformation.vbs, and choose Open from the Action menu.

34

Work
Part I Covering the Basics

5.	 In the Reference section of the script, locate the following line:

Const MAX_LOOPS = 8, ONE_HOUR = 3600000

6.	 Add a new line under the two existing constant definitions.

7.	 Add a constant for half an hour. It will look like the following:

Const HALF_HOUR = 1800000

8.	 At the end of the statement, add a comment such as the following:

'30 minutes in milliseconds.

9.	 Do the same thing for fifteen minutes, and for five minutes. The completed section will
look like the following:

Const QUARTER_HOUR = 900000 'fifteen minutes in milliseconds

Const FIVE_MINUTES = 300000 'five minutes in milliseconds

10.	 Save your work and compare the results with DisplayProcessInformationExtraCon­
stants.vbs.

11.	 Change the WScript.sleep command to use the FIVE_MINUTES constant at the bottom of
the script. It will look like the following:

WScript.Sleep FIVE_MINUTES

12.	 Save and run the script using CScript from a CMD prompt. Time the execution. It
should make a second pass after five minutes. Compare it with the DisplayProcessInfor­
mationFiveMinutes.vbs script.

13.	 Use Calc.exe to come up with additional constants to use for this script (such as one
minute. The formula is n(minutes) * 60(seconds) * 1000(for milliseconds).

Note Notice the underscore (_) that appears at the end of the first and second lines in the
Worker information section. This is used to break up the code into more than one line to make
the code easier to read. The important aspect to pay attention to is the placement of the open
and close parentheses and the quotation marks (" ") as you break up the lines. Notice also that
at times, the ampersand is used, which as you’ll recall from Chapter 1 is the concatenation
character. This ampersand is used when you’re inside of the parentheses, and you need to stick
the two lines together. At times, you’ll need to embed spaces to ensure commands are not
messed up when you break the lines. The line continuation following ExecQuery does not
include the ampersand because it falls outside of the parentheses.
er and Output Information

The Worker section of the script consists of a rather nasty WMI query string and its attendant
assignment to the objWMIService variable. The nasty code is shown here:

35 Chapter 2 Looping Through the Script

Set objWMIService = GetObject("winmgmts:").ExecQuery _

("SELECT * FROM Win32_Process where processID <> 0")

This line of code connects to WMI and then executes a query that lists all Win32 processes
running on the machine. You’ll learn about WMI in Chapter 8, but for now, it is important to
notice that the query looks exactly like a regular SQL Server query. The code says to select
(which means to choose something) from the Win32 process. The “something” that is being
chosen is *. As you no doubt recognize, * is the wildcard character and means “everything.” So
this query chooses everything from the Win32 process, but only if the process ID is not equal
to 0 (the system idle process).

As we continue, the Worker and the Output information sections kind of merge together. This
section begins with the For i = 1 To MAX_LOOPS command, which means that you’re going to
count to eight and on each pass increment the value of the variable i. With each pass, the vari­
able i changes its value. In the second line of the Worker information section is a For
Each…Next command. This tells you that the information returned from the objWMIService
variable is a collection. Because it is a collection, you need to use For Each…Next to walk (iter­
ate) through the collection. As the code walks, it echoes out the value of the information you
want (such as the process, process ID, and thread count). At the end of the grouping of
WScript.Echo commands is a Next command. The problem with nested Next commands is try­
ing to keep track of which Next belongs to which For or For Each. Indenting them a little bit
will help you see which For command lines up with which Next command. This technique
makes the script easier to read.

The Now command is used to echo out the date and time, providing an easy way to time
stamp logs and other output obtained from scripts. In addition, because Now is inside the For
Each…Next loop, it will time stamp each process as it is reported. This enables you to see how
long it takes the script to complete its processing—the Now command reports down to the
second.

The Space () command uses the space function that is built into VBScript. We do not need to
define it, or declare it, or anything. It is built into the scripting language. It acts like a variable
tab command, in that we can tell it how many spaces we want, and it magically skips over that
many spaces.

The vbNewLine command is really a constant value that is built into VBScript. It tells the script
to print out a new line for us.

Using the Space function and the vbNewLine constant

1. Open Notepad or the script editor of your choice.
2. On the first line of your script, set Option Explicit, as seen below:

Option Explicit

36
Part I Covering the Basics

3.	 On the next line, use WScript.Echo and the Space() function at the beginning of the line
to jump over 10 spaces. Follow the command with some text indicating the space. It
may look like the following:

WScript.Echo Space(10) & "this is a 10 space line at the beginning"

4.	 On the next line, WScript.Echo some text with the vbNewLine constant at the end of your
line. Your code could look like the following:

WScript.Echo "This line ends with vbNewLine" & vbNewLine

5.	 Now let’s end by using the Space function embedded in a line of text. Note that we will
need to use the & concatenation character before and after the function, as seen below:

WScript.Echo "This is an embedded 5 spaces" & Space(5) & "in the line"

6.	 Save and run your script. If you have problems, you can compare your code with the
SpaceAndVBNewLine.vbs script in My Documents\Microsoft Press\VBScriptSBS\Ch02.

The WScript.Sleep command is used to pause the execution of the script for a specified
amount of time. As mentioned earlier in this chapter, the Sleep command takes its input in the
form of milliseconds. To pause the script for one second, you would write the code like this:

WScript.Sleep 1000

I’ve been calling this the Sleep command, but in programming speak it would be called the
Sleep method of the WScript object. However, if I called it that, this book would sound like a
programmer’s reference and therefore would be boring. So I’ll just call it the Sleep command
and be done with it.

Pausing the script can have a number of uses. For instance, it enables you to have a very flex­
ible running schedule. If you attempted to pause the script using the scheduler service on
Windows Server 2003, you would need eight different schedules, because there is no notion
of “pause for an hour, and only do it for eight hours.” One other very useful aspect of the Sleep
command is that it allows for “spin-up time.” By using the Sleep command, you can cause a
script to wait for a slower component to come on line prior to execution. The Sleep command
is not an atomic clock. Although it’s fine for generic pausing of a script, don’t think you can
use it for scientific timing—it was never designed for that purpose. In general, it’s not accurate
for periods of time less than a second.

We use WScript.Echo to indicate that the script has finished its pass through the processes.
Remember that anything inside the quotation marks will be echoed to the screen. By padding

the script with a bunch of *****, you can more easily find your information. The other impor­
tant thing to notice here is that each time we make a loop with the For…Next statement, we are
re-issuing the WMI query. At first glance, this may seem ineffecient. However, if we did not do
the query a new time for each loop, then we would just be printing out the results of the first
query eight times with no new resulting information, which would be even less efficient!

Do W
37 Chapter 2 Looping Through the Script

For i = 1 To MAX_LOOPS

Set objWMIService = GetObject("winmgmts:").ExecQuery _

("SELECT * FROM Win32_Process where processID <> 0")

WScript.Echo "There are " & objWMIService.count &_

" processes running " & Now

For Each objItem In objWMIService

WScript.Echo "Process: " & objItem.Name

WScript.Echo Space(9) & objItem.commandline

WScript.Echo "Process ID: " & objItem.ProcessID

WScript.Echo "Thread Count: " & objItem.ThreadCount

WScript.Echo "Page File Size: " & objItem.PageFileUsage

WScript.Echo "Page Faults: " & objItem.PageFaults

WScript.Echo "Working Set Size: " & objItem.WorkingSetSize

WScript.Echo vbNewLine

Next

WScript.Echo "******PASS COMPLETE**********"

WScript.Sleep ONE_HOUR

Next

Quick Check

Q. WScript.Sleep is expressed in what unit?

A. WScript.Sleep is expressed in milliseconds.

Q. What is an important difference between For Each…Next and For…Next?

A. With For Each…Next, you don’t need to know the number of elements in advance.

hile...Loop
The Do While…Loop command enables you to run a script as long as a certain condition is in
effect. If you were in Kauai, the Do While…Loop might look like this:

Do While sun_is_shining

Surf

Loop

Do While…Loop means that as long as the specified condition remains true, the listed action
continues to perform—it just loops around and around. In our silly preceding example, as
long as the sun is shining, we surf. (Not a bad way to spend an afternoon.)

38

Head
Part I Covering the Basics

Just the Steps To use the Do While…Loop

1. On a new line in the script, type Do While followed by a condition to be tested.

2. On the next line, type the command to be performed.

3. On the next line, type Loop.

In the MonitorForChangedDiskSpace.vbs script, you monitor the disk space on a server. If the
free space changes, then a message is echoed to the screen. Read through this script and see
which parts you can identify. After you finish reading it, we’ll discuss it.

MonitorForChangedDiskSpace.vbs
Option Explicit

'On Error Resume Next

Dim colMonitoredDisks

Dim objWMIService

Dim objDiskChange

Dim strComputer

Dim startTime, 'snapTime used for timer Function

Const LOCAL_HARD_DISK = 3 'the driveType value from SDK

Const RUN_TIME = 10 'time to allow the script to run in seconds

strComputer = "."

startTime = Timer

Set objWMIService = GetObject("winmgmts:\\" & strComputer & "\root\cimv2")

Set colMonitoredDisks = objWMIService.ExecNotificationQuery _

("Select * from __instancemodificationevent within 10 where " _

& "TargetInstance ISA 'Win32_LogicalDisk'")

Do While True

snapTime = Timer

Set objDiskChange = colMonitoredDisks.NextEvent

If objDiskChange.TargetInstance.DriveType = LOCAL_HARD_DISK Then

WScript.echo "diskSpace on " &_

objDiskChange.TargetInstance.deviceID &_

" has changed. It now has " &_

objDiskChange.TargetInstance.freespace &_

" Bytes free."

End If

If (snapTime - startTime) > RUN_TIME Then

Exit Do

End If

Loop

WScript.Echo FormatNumber(snapTime-startTime) & " seconds elapsed. Exiting now"

WScript.quit
er Information

The Header information section, as shown in the next segment of code, begins with the

Option Explicit command. You can think of Option Explicit as a cheap spelling checker.

Refer
39 Chapter 2 Looping Through the Script

Because it forces you to list all your variables, if you later misspell a variable, VBScript gives
you an error, such as the one shown in Figure 2-1.

Figure 2-1 The Option Explicit command acts like a spelling checker for your scripts

After the Option Explicit command, you see On Error Resume Next. This is one command you
want to comment out during testing of the script. The reason for this is that the On Error
Resume Next command suppresses error messages while you’re in testing and development
mode, and you won’t know what’s going on with the script. One of the easiest errors to see is
failure to declare a variable while using Option Explicit. The Header information section of our
script is shown here:

Option Explicit

'On Error Resume Next

Dim colMonitoredDisks

Dim objWMIService

Dim objDiskChange

Dim strComputer

Dim startTime, snapTime 'used for timer Function

■	 colMonitoredDisks Used to hold the collection of disks that is returned by the WMI
query.

■	 objWMIService Used to hold the connection string and query to WMI.

■	 objDiskChange Used to hold the notification event that comes from WMI, which lets
you know you have a change in disk status.

■	 strComputer Used to hold the target of the WMI query. When set to "." it means to run
the WMI query on the local machine.

■	 startTime Used to hold the number of seconds since midnight. Will be used with the
Timer function.

■	 snapTime Used to hold the number of seconds since midnight. It will be subtracted
from startTime and tell us how long the operation has been running.

ence Information
In the Reference information section, shown next, you assign values to variables and define
the constants. Two constants are used: LOCAL_HARD_DISK and RUN_TIME. The
LOCAL_HARD_DISK constant is set to 3, which is a local fixed disk. This value comes from
the Platform SDK article on the WMI class WIN32_LogicalDisk. The second constant is

40

Work
Part I Covering the Basics

RUN_TIME and it is used to control how long we allow the script to run. It is set in seconds,
and 10 is used for testing purposes. To allow the script to run for longer periods of time, you
would increase the value of this constant.

StartTime is set equal to Timer. The Timer function is used see how long a script is running. It
counts the number of seconds that have elapsed since midnight. Two or three variables are
normally employed when using the Timer function. In this script, we use two: startTime and
snapTime. We will compute the difference between the two values and echo out the results.
We could also have used a third variable to hold the result of the computation, but in this
instance there is little value in doing so.

Const LOCAL_HARD_DISK = 3 'the driveType value from SDK

Const RUN_TIME = 10 'time to allow the script to run in seconds

strComputer = "."

startTime = Timer

er and Output Information

The Worker and Output information section of the script is where you do some pretty cool
stuff. The two Set commands at the beginning of the Worker section are WMI things. The first
makes the connection into the default WMI namespace on the local computer. The second Set
command executes a notification event query. This sets up a subscription that tells WMI we
want to be notified if something changes in relation to our logical disks. We only want to be
notified if this occurrs during a 10-second interval. In a production server, do not set the
within clause to less than 60 and preferably not less than 120. But for testing purposes, within
10 seconds is fine. Let’s take a look at what is going on in this section of the script:

Set objWMIService = GetObject("winmgmts:\\" & strComputer & "\root\cimv2")

Set colMonitoredDisks = objWMIService.ExecNotificationQuery _

("Select * from __instancemodificationevent within 10 where " _

& "TargetInstance ISA 'Win32_LogicalDisk'")

Do While True

snapTime = Timer

Set objDiskChange = colMonitoredDisks.NextEvent

If objDiskChange.TargetInstance.DriveType = LOCAL_HARD_DISK Then

WScript.echo "diskSpace on " &_

objDiskChange.TargetInstance.deviceID &_

" has changed. It now has " &_

objDiskChange.TargetInstance.freespace &_

" Bytes free."

End If

If (snapTime - startTime) > RUN_TIME Then

Exit Do

End If

Loop

First let’s look at the Do While…Loop construction. Notice that the line beginning this section
is Do While True. This tells VBScript that you want to invoke Do While…Loop. Everything

41 Chapter 2 Looping Through the Script

between Do While True and Loop will continue to run as long as the Do While statement is true.
It will continue to be true forever, because we only say Do While True.

After you set up Do While…Loop, you assign the objDiskChange variable to be equal to the next
event that comes out of colMonitoredDisks. Because the Do While True clause will run forever,
we want to have a means of exiting the script (so that it does not run forever). We use an If
Then construction. We will actually talk about this construction in Chapter 3, “Adding Intelli­
gence,” but for now it is sufficient to see that if the script has been running for more than 10
seconds, we use the Exit Do command and end the script.

Note Normally, I do not like using Exit Do because I prefer to allow the logic of the script to
determine when things are finished. In general, you should be able to handle conditions and
allow the script to run through the structure and not have to “bail out” early by calling Exit Do.
There are much better ways of creating a timer (see the WIN32_LocalTime script in Microsoft
Windows Scripting with WMI: Self-Paced Learning Guide [Microsoft Press]), but this is a rather
cute way to create a simple timer.

Quick Check

Q. What is the primary function of Do While…Loop?

A. It enables you to run a script as long as a certain condition is in effect.

Q. What is one reason for turning off On Error Resume Next during development and
testing?

A. During development and testing, you want to be presented with error messages to facili­
tate testing and debug operations.

Note This script is one you would want to run in CScript. To do so, open up a CMD prompt
and type cscript and the file name. The complete command line would look something like
this: cscript c: \Documents and Settings\%username%\My Documents\Microsoft
Press\VBScriptSBS\ch02\ MonitorForChangedDiskSpace.vbs (of course you would need to sub­
stitute your user name for the %username% portion). CScript is nice because when you want to
break out of the program, all you do is press Ctrl+C. If the script is run under WScript (which is
the default), to end the program, you have to open up Task Manager and kill the wscript.exe
process.

Using the Timer Function and the FormatNumber function
1. Open Notepad or the script editor of your choice.

2. On the first line of your script, set Option Explicit, as seen below:

Option Explicit

42
Part I Covering the Basics

3.	 Declare three variables using the Dim command. I used startTime, endTime, totalTime, as
seen below:

Dim startTime,endTime,totalTime

4.	 Declare a constant to be used with the Sleep command. I used sleepTime, as seen below:

Const sleepTime = 1000

5.	 Use the startTime variable and assign the value that comes back from the Timer function
to it, as seen below:

startTime = Timer

6.	 Now let’s evaluate the value of total time. If it is less than five, then we will continue to
loop through our code. This is seen below:

Do While totalTime < 5

7. Let’s print out the value of startTime. You will see it is a large number of seconds.

WScript.Echo startTime

8.	 Now let’s assign a snapshot to the end time. We again use timer.

endTime = timer

9.	 Just for fun, let’s print out the value of endTime so we can compare results with startTime.

WScript.Echo endTime

10. Compute the value of totalTime by subtracting the value of startTime from endTime.

totalTime = endTime - startTime

11.	 So we can monitor progress, let’s print out the value of totalTime:

WScript.Echo totalTime

12.	 Clean up the number that was computed as totalTime by using the formatNumber func­
tion. It will trim everything to two decimal places by default, as seen below:

totalTime = formatNumber(totalTime)

13.	 Now let’s sleep for a little while and print out some blank lines, and then loop. This is
done by the following code:
wscript.sleep sleepTime

WScript.Echo vbNewLine

loop

Do U
43 Chapter 2 Looping Through the Script

14.	 Save and run your script. If you have problems, you can compare your code with the
TimerFormatNumberLoop.vbs script in My Documents\MicrosoftPress\VBScriptSBS\
Ch02.

ntil...Loop
As you know by now, Do…Loop enables the script to continue to perform certain actions until
a specific condition occurs. Do While…Loop enables your script to continue to perform these
actions as long as the specified condition remains true. Once the specified condition is no
longer true, Do While…Loop exits. In contrast, Do Until…Loop has the opposite effect—the
script continues to perform the action until a certain condition is met.

“So what?” you might ask. In and of itself, Do Until is not all that exciting, but you can use it
to perform certain tasks. Here are common uses of Do Until:

■ Read text from a file

■ Read through records in a record set

■ Create a looping condition for monitoring purposes

Each of these implementations will be used in coming chapters. For now, let’s look at a typical
use of Do Until, which is illustrated in the ReadTextFile.vbs script:

ReadTextFile.vbs
Option Explicit

'On Error Resume Next

Dim strError

Dim objFSO

Dim objFile

Dim strLine

Dim intResult

CONST ForReading = 1

strError = "Error"

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFile = objFSO.OpenTextFile("C:\windows\setuplog.txt", ForReading)

strLine = objFile.ReadLine

Do Until objFile.AtEndofStream

strLine = objFile.ReadLine

intResult = InStr(strLine, strError)

If intResult <> 0 Then

WScript.Echo(strLine)

End if

Loop

WScript.Echo("all done")

objFile.Close

44
Part I Covering the Basics

In this script, you begin with the Header information section, which is where you declare your
variables and turn on error handling. Here is the Header information section:

Option Explicit

'On Error Resume Next

Dim strError

Dim objFSO

Dim objFile

Dim strLine

Dim intResult

As in other scripts, Option Explicit tells VBScript that you’re going to tell VBScript about each
variable before you use it. If an unnamed item comes up and it’s not a command, an error is
generated. This helps to save us from misspelled variable names and typos. On Error Resume
Next tells VBScript to ignore all the errors it can and to go to the next line. You don’t want this
turned on when you’re writing scripts, because scripts will fail and not let you know what’s
going on, so it is turned off here.

After the two standard lines of the script, it’s time to declare some variables. Because you can
give variables any name you want (except the names for built-in commands or names already
used for constants), it makes sense to use names that are self-explanatory. In addition, as you
have already noticed, in VBScript you seem to always be using the same types of connections
and commands. For instance, by the end of this book, you will certainly know how to create
the file system object, and I tend to use the variable name objFSO for this. The obj part tells me
that the item is associated with an object, and the FSO portion is simply shorthand for file sys­
tem object. This object could just as well be named objFileSystemObject, but I use it a lot and
that name requires way too much typing. For some guidance on variable naming conventions,
refer to the “Variable Naming Convention” section of Appendix D.

Anyway, because this section is not about the file system object but rather about using Do
Until, let’s plunge ahead. The next part of the script is the Reference information section. It’s
here that you tell VBScript that you’re going to define things to make it easier to work with
them. In the following code, you create several reference assignments:

CONST ForReading = 1

strError = "error"

The constant ForReading is set equal to 1. When you use the openTextFile method, it can open
a file in one of three ways: to read, to write, or to append. In this instance, we will open it so
we can read from the file. The constant ForReading makes the script easier to read. We will
cover this in detail in Chapter 6, “Basic Windows Administration.” The strError variable is set
equal to the word error. This is what you want to search for in the log file you’re going to open.

The word assigned to strError can easily be changed to search the log file for other words such
as failure, failed, cannot, or even unable to, all of which show up in log files from time to time.
By using a variable for the text you are searching for, you are facilitating the ability to change
the script to search for other words.

Work
45 Chapter 2 Looping Through the Script

er and Output Information

You use two Set commands to talk to the file system and open a text file. We’ll be covering
these commands in detail in Chapter 6. For now, it’s sufficient to note that the text file you’re
opening to read is C:\windows\setuplog.txt, which is the file that Windows Server 2003 cre­
ates during installation. The file is huge and loaded with needed troubleshooting information
if setup were ever to fail. But the installation doesn’t have to be a complete failure for the file
to be useful. For instance, if you’re having problems with Windows Product Activation (WPA),
just change strError and look for WPA. Error codes found in this section of the setuplog.txt are
standard HTTP 1.1 messages (for example, 403 is access denied, 404 is file or directory not
found, and 407 is initial proxy authentication required by the Web server). Armed with this
information and the script, you can search setuplog.txt, parse the return information, and
match it with standard HTTP 1.1 messages.

The line strLine = objFile.ReadLine tells VBScript to read one line from the text file referenced
by objFile. StrLine holds the line of text that comes out of the file via the ReadLine command.
If you printed strLine by using the WScript.Echo command, the line of text would be echoed to
the screen. You can also use the strLine variable to hold the line of text so that you can search
it for our keyword error.

Notice that Do Until is in effect until we are at objFile.AtEndofStream. Think of the ReadLine
command as a pump—you’re going to pump text into Do Until…Loop until you reach the end
of the text stream. This means that you read lines of text, one line at a time, until you reach the
end of the file. You can see this process in the first two lines.

Do Until objFile.AtEndofStream

strLine = objFile.ReadLine

intResult = InStr(strLine, strError)

If intResult <>0 Then

WScript.Echo(strLine)

End if

Loop

Once the text pump is set up and you have a nice steady stream of letters coming across, you
use the next command in the Worker and Output information section of the script. You now
use the intResult variable that you declared earlier. You assign intResult to the result of using
the InStr command (think of it as “in string”), which looks through a string of text and tries to
find a match. The command is put together like this:

Command String 1 String 2

InStr String to be searched String being searched for

46
Part I Covering the Basics

In this script, you look through each line of text that comes from the Setuplog.txt file to find
the word error, which you assigned to the variable named strError. This part of the script looks
like the following:

SearchResult = InStr(strLine, strError)

Now the situation gets a little complicated, because the InStr command is rather peculiar in
the way it hands back information, as detailed in Table 2-1.

Table 2-1 Use of the InStr function

Condition Result Returned

String 1 is zero in length 0

String 1 is null Null

String 2 is zero in length Start

String 2 is null Null

String 2 is not found 0

String 2 is found in string 1 Position at which the match is found

In Table 2-1, the only value we’re interested in is the one that is not equal to zero. (Although
a null value contains no valid data, it is not the same as zero or as the empty string "", often
referred to as a null string. You’ll learn more about that when we talk about data types in Chap­
ter 8.) To evaluate the results of the InStr function, use If…Then to make sure that what came
back from InStr is not equal to zero—which tells us that InStr is indicating where in the line the
word error was found. We really don’t care where in the line the word occurs, only that the
word is present. You use WScript.Echo to echo out the value of strLine. Note that you print out
strLine, which is the variable that contains the line of text that you read from the log file. You
don’t echo out intResult because it contains only a number, as explained in Table 2-1.

After you print out the line containing the error message from the Setuplog.txt file, you end
your If statement by using the End If command, and you Loop (which sends us right back to
the Do Until command). You continue to Loop Until until you reach the end of the file, at
which time you echo out all done and close your file. Echoing all done just lets you know
(while you watch stuff scroll on the screen) that you’ve completed running the script (other­
wise, there is no indication that the script completed).

Quick Check

Q. What is the difference between Do Until and Do While?
A. Do Until does not run once a condition becomes true, whereas Do While runs as long as
a condition is true.

Q. What is the InStr command used for?

A. InStr is used to look through a string of text to find a specific sequence of characters.

Do…
47 Chapter 2 Looping Through the Script

Loop

The Do…Loop statement is used to put a script into a loop for an undetermined number of
loops. It causes the script to simply loop and loop and loop. In the DoLoopMonitorForPro­
cessDeletion.vbs script, we use an additional event driven script. Here we use the Do…Loop
structure, rather than using Do While True as in the MonitorForChangedDiskSpace.vbs script.

To use the DoLoopMonitorForProcessDeletion.vbs script, you will want to start up Notepad.
Then you run the script. While the script is running, you can close out Notepad. Within 10
seconds, you will get a printed message that lists the name of the process, the process ID, and
the amount of user mode time that was consumed. Because the script is a Do…Loop script, it
will continue to run until you manually exit the script (by using Ctrl+C if you are running
under CScript in a CMD prompt, or by killing the wscript.exe process in TaskManager if you
are running the script in WScript). This means that if you open another instance of Notepad,
wait for a few seconds, and then exit Notepad again, you will once again trigger an alert. You
can obviously use this script to monitor more important processes than Notepad.exe. If you
did not have the Do…Loop, the script would only alert you one time when a process exited—
not a very tenable situation for a monitoring script.

DoLoopMonitorForProcessDeletion.vbs
Option Explicit

'On Error Resume Next

dim strComputer 'computer to run the script upon.

dim wmiNS 'the wmi namespace. Here it is the default namespace

dim wmiQuery 'the wmi event query

dim objWMIService 'SWbemServicesEx object

dim colItems 'SWbemEventSource object

dim objItem 'individual item in the collection

Dim objName ' monitored item. Any Process.

Dim objTGT 'monitored class. A win32_process.

strComputer = "."

objName = "'Notepad.exe'" 'the single quotes inside the double quotes required

objTGT = "'win32_Process'"

wmiNS = "\root\cimv2"

wmiQuery = "SELECT * FROM __InstanceDeletionEvent WITHIN 10 WHERE " _

& "TargetInstance ISA " & objTGT & " AND " _

& "TargetInstance.Name=" & objName

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

Do

Set objItem = colItems.NextEvent

Wscript.Echo "Name: " & objItem.TargetInstance.Name & " " & now

Wscript.Echo "ProcessID: " & objItem.TargetInstance.ProcessId

WScript.Echo "user mode time: " & objItem.TargetInstance.UserModeTime

Loop

48

Whil
Part I Covering the Basics

e…Wend
One more kind of looping technology is the While…Wend statement. It is read as follows:
“While statement A is true, we will continue to loop through the code. Once it is met, then we
will exit at the Wend statement.” It is very similar to a Do…Until loop statement. The following
script, WhileWendLoop.vbs, illustrates using this construction.

The WhileWendLoop.vbs script is a timer script. We create a time stamp by using the timese­
rial function. If you look up timeserial in the My Documents\Microsoft
Press\VBScriptSBS\Resources\Scripts56.chm file, it will tell you that it takes three numbers
(hour, minute, second) and turns them into a date variant—which means it will turn them into
a time stamp we can use.

In the subBeep subroutine, we use the Run method to create a beep. Subroutines are dis­
cussed in chapter 15 (Using Subs and Functions). For now, you can think of a subroutine as
a special part of the script we can access by name. In this script, we use the subroutine to
keep the details of creating a beep from the main script. Later, we may want to change the
beep to something else … which could be done by replacing the subroutine with some other
code. If it was embedded in the worker section of the script, we would have to make many
more changes. We do this once the time has been reached that was specified in the dtmTime
variable.

To use the WhileWendLoop.vbs script, you will need to pick a time (in 24-hour time format)
that is about a minute in the future; make sure you supply that time to the dteTime variable in
the Reference section of the script. Then run the script. Once the time is reached, the script
will beep and print a message indicating that the time has been reached.

WhileWendLoop.vbs
Option Explicit

'On Error Resume Next

dim dtmTime

Const hideWindow = 0

Const sleepyTime = 1000

dtmTime = timeSerial(19,25,00) <;$QS>Modify this value with desired time

while dtmTime > Time

WScript.Echo "current time is: " & Time &_

" counting to " & dtmTime

WScript.Sleep sleepyTime

Wend

subBeep

WScript.Echo dtmTime & " was reached."
Sub subBeep

Dim objShell

Set objShell = CreateObject("WScript.Shell")

objShell.Run "%comspec% /c echo " & Chr(07),hideWindow

End Sub

Crea
49 Chapter 2 Looping Through the Script

ting Additional Objects

In Chapter 1, we looked at creating objects and we discussed objects, properties, and methods.
Recall that to perform anything useful, we need to create an object. In the Script56.chm file on
the CD-ROM, we have the scripting SDK documentation. If you look up wshShell.object, you
will find the properties and objects provided by this object. WshShell is the actual name of the
object, and will result in faster results in the SDK. Of course, we never use the name wshShell
in a script, we use wscript.shell. We create the wshShell object by using the following command:

Set objShell = createObject("wscript.shell")

Once we create the wscript.shell object, we have access to the following methods:

Method Purpose

Run Runs an external command

Exec Runs an external command, but provides access to the datastream

appActivate Brings a specified window to the foreground

sendKeys Enables you to send keystrokes to the foreground application

CreateShortCut Creates shortcuts

LogEvent Writes to the application Event log

RegRead Reads from the registry

RegWrite Writes to the registry

RegDelete Deletes from the registry

PopUp Displays a pop-up dialog box

ExpandEnvironmentStrings Parses environmental variables (these variables can be displayed by
using the Set command from a CMD prompt)

In the WhileWendLoop.vbs script, we used the Run method to run the command prompt
(CMD.exe), to have the computer produce a beep. The echo command tells the CMD program
to print out something. Chr(07) tells the script we want to use an ASCII value. ASCII values
less than 31 are all non-printing characters, and 07, as you saw in the script, makes a beep. In
the CreateAddRemoveShortCut.vbs script, we are going to use the CreateShortCut method to
create a shortcut on the desktop. We will also use the specialFolders property to pick up the
path to the desktop so we can create a shortcut there. The thing that is special about this par­
ticular script is that it supplies values for command line arguments. In this way, we run the
control.exe program, which provides access to control panel applets. We then use the argu­
ments property of the shortcut object to supply the command line argument, which then
launches the specific control panel applet. Microsoft Knowledge Base article KB192806 (avail­

able on support.Microsoft.com) details the names of the control panel applets that can be
launched in this manner. Figure 2-2 illustrates the properties that can be set on a shortcut.

50
Part I Covering the Basics

Figure 2-2 Shortcut properties assigned via script

CreateAddRemoveShortCut.vbs
Option Explicit

Dim objShell

Dim strDesktop 'pointer to desktop special folder

Dim objShortCut 'used to set properties of the shortcut. Comes from using createShortCut

Dim strTarget

strTarget = "control.exe"

set objShell = CreateObject("WScript.Shell")

strDesktop = objShell.SpecialFolders("Desktop")

set objShortCut = objShell.CreateShortcut(strDesktop & "\AddRemove.lnk")

objShortCut.TargetPath = strTarget

objShortCut.Arguments = "appwiz.cpl"

objShortCut.IconLocation = "%SystemRoot%\system32\SHELL32.dll,21"

objShortCut.description = "addRemove"

objShortCut.Save

If we need to run an external script that provides a capability that is not native in VBScript,
then we have two choices: We can use the Run method, or we can use the Exec method. The
Run method runs a program when we only need to access the program. The Exec method
gives us access to the text stream that is produced by running the command. When we run

command line utilities, we will nearly always want to capture the text stream. The RunNet-
Stat.vbs script runs the netstat.exe utility. Netstat.exe -? provides help on using this command,
and Microsoft Knowledge base article KB281336 supplies lots of examples for using this awe­
some tool. The great thing about using Netstat is that it will tell you the process ID of pro­

Usin
Exer
51 Chapter 2 Looping Through the Script

grams on your machine that are listening to Transmission Control Protocol (TCP) ports. It
will also tell you the Internet Protocol (IP) address of any connections your machine may have
made as well. Try the program below. The script is set up so that you can easily change and
run any other command line utility as well. All you do is edit the command variable.

RunNetStat.vbs
Option Explicit 'is used to force the scripter to declare variables

'On Error Resume Next 'is used to tell vbscript to go to the next line if it encounters an

Error

Dim objShell'holds WshShell object

Dim objExecObject'holds what comes back from executing the command

Dim strText'holds the text stream from the exec command.

Dim command 'the command to run

command = "cmd /c netstat -ano"

WScript.Echo "starting program " & Now 'used to mark when program begins

Set objShell = CreateObject("WScript.Shell")

Set objExecObject = objShell.Exec(command)

Do Until objExecObject.StdOut.AtEndOfStream

strText = objExecObject.StdOut.ReadAll()

WScript.Echo strText

Loop

WScript.echo "complete" 'lets me know program is done running

g the For Each…Next Command Step-by-Step
cises

In this section, you’ll explore using the For Each…Next command and the For…Next
command.

1.	 Open up the ping.vbs script in Notepad. It is located in the My Documents\Microsoft
Press\VBScriptSBS\Ch02\StepByStep folder.

2.	 Change the values strMachines = "s1;s2" to one or more computers reachable on your
network. (If you are not networked, you can do something like this: strMachines =
"127.0.0.1;localhost;127.0.0.2").

3.	 Save the script with a different name, such as YourNamePing.vbs.

4.	 Open a CMD prompt and switch to the directory where you saved the script.

5.	 Type cscript YourNamePing.vbs and see whether the script runs. If it does not, use the
PING command from the CMD prompt to test your networked machine and ensure it is
reachable. If you get a reply, make sure you have the quotation marks and the semicolon,

as shown in step 2.

6.	 Set Option Explicit.

7.	 Dim each variable that is used in the script.

52

One
Part I Covering the Basics

8.	 Set On Error Resume Next, but comment it out.

9.	 Add comments to identify each section of the script.

10.	 Examine the construct of the For Each…Next statement.

11.	 In the Worker and Output sections of the script, put in a For…Next statement that makes
the script send three pings. Hint: Consider placing the For portion after the line that
reads For each machine in aMachines.

12.	 Save the script and test.

13.	 If it runs properly, turn the On Error Resume Next statement back on by removing the
comment.

14.	 Save the script. If it does not run, compare it with pingSolution.vbs in the ch02\
StepByStep folder.

15.	 Extra: Play around with the script and see what optimizations you can add, such as
reporting on different properties of the Ping command. Look up the WIN32_PingStatus
WMI class in the Platform SDK for this information. Compare your results with pingSo­
lutionExtra.vbs.

16.	 Extra, Extra: Add additional comments to the script that explain why certain items are
required.

17.	 More Extras: Configure the script to ping a range of IP addresses (for testing, use
127.0.0.1–127.0.0.255). Compare your results with pingSolutionMoreExtras.vbs.

18.	 Even more: Have it ping only every fifth computer inside the range. Compare your
results with pingSolutionEvenMore.vbs.

19.	 More more extras: Configure the script to only return computers that do not respond to
the ping. Compare your results with pingSolutionMoreMoreExtras.vbs.

Step Further: Modifying the Ping Script
In this section, you will modify the ping script so that it can be used to monitor your servers.

1.	 Open pingSolution.vbs and save it as YourNamePingModification.vbs.

2.	 Comment out On Error Resume Next so that you can test the script.

3.	 Define a constant called ONE_HOUR and set it equal to 100 for testing purposes. The
WScript.Sleep command takes an argument in milliseconds. So normally you would set
ONE_HOUR to 3600000, which is one hour in milliseconds.
4.	 Declare a variable to be used to count to eight, such as ihours.

5.	 Add a For ihours = 1 To 8 command to the beginning of the Worker section. It will go
under aMachines = Split(strMachines, ";").

53 Chapter 2 Looping Through the Script

6.	 Add the WScript.Sleep(ONE_HOUR) command to the bottom of the script (after all
those Next commands). When you define a constant as you did in step 3, testing your
script is a lot nicer.

7.	 Save the script. Try to run the script. (You should get an error.)

8.	 Add another Next command after the WScript.Sleep command.

9.	 Save the script and run it. (It should work now.)

10.	 Add a WScript.Echo command to the bottom of the script with a message letting you
know when the script is finished.

Chapter 2 Quick Reference

To Do This

Walk through a collection of items such as is often Use For Each…Next
returned by WMI

Define numbers that could be confusing if they Use a constant
were embedded within a script

Make a script easier to read, and easier to modify Use a constant
in the future

Modify a value during script execution Use a variable

Perform an operation a certain number of times Use For…Next

Create a looping condition that occurs only as Use Do While…Loop
long as a particular condition is true

Create a looping condition that occurs until a Use Do Until…Loop
particular condition becomes true

Pause script execution Use WScript.Sleep

Pause script execution for five seconds Use WScript.Sleep(5000)

Chapter 3

Adding Intelligence

Before You Begin

To successfully complete this chapter, you need to be familiar with the following concepts,
which were presented in Chapters 1 and 2:

■ Declaring variables

■ Basic error handling

■ Connecting to the file system object

■ Using For Each…Next

■ Using Do While

After completing this chapter, you will be able to:

■ Use If…Then

■ Use If…Then…ElseIf

■ Use If…Then…Else

■ Use Select Case

■ Use intrinsic constants

If…Then
If…Then is one of those programming staples (like fried chicken and mashed potatoes are sta­
ples in the southern United States). What’s nice about If…Then is that it makes sense. We use
this kind of logic all the time.

The basic operation is diagrammed here:

If condition Then action

If store is open Then buy chicken

The real power of If…Then comes into play when combined with tools such as those we looked
at in Chapter 2, “Looping Through the Script.” If…Then is rarely used by itself. Although you
could have a script such as IfThen.vbs, you wouldn’t find it very valuable.
55

56 Part I Covering the Basics
IfThen.vbs
On Error Resume Next

Const a = 2

Const b = 3

Const c = 5

If a + b = c Then

WScript.Echo(c)

End If

In this script three constants are defined: a, b, and c. We then sum the numbers and evaluate
the result by using the If…Then statement. There are three important elements to pay attention
to in implementing the If…Then construct:

■ The If and the Then must be on the same line

■ The action to be taken must be on the next line

■ You must end your If…Then statement by using End If

If any of these elements are missing or misplaced, your If…Then statement generates an error.
Make sure you remember that End If is two words, and not one word as in some other pro­
gramming languages. If you do not see an error and one of these elements is missing, make
sure you have commented out On Error Resume Next.

Now that you have the basic syntax down pat, let’s look at the following more respectable and
useful script, named GetComments.vbs, which is in the folder \My Documents\Microsoft
Press\VBScriptSBS\ch03. If you put lots of descriptive comments in your Microsoft Visual
Basic, Scripting Edition (VBScript) scripts, Then GetComments.vbs pulls them out and writes
them into a separate file. This file can be used to create a book of documentation about the
most essential scripts you use in your network. In addition, If you standardize your documen­
tation procedures, Then the created book will require very little touch-up work when you are
finished. (OK, I’ll quit playing If…Then with you. Let’s look at that code, which is described in
the next few sections.)

GetComments.vbs
Option Explicit

On Error Resume Next

Dim scriptFile

Dim commentFile

Dim objScriptFile

Dim objFSO

Dim objCommentFile

Dim strCurrentLine

Dim intIsComment

Const ForReading = 1

Const ForWriting = 2

scriptFile = "displayComputerNames.vbs"

commentFile = "comments.txt"

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objScriptFile = objFSO.OpenTextFile _

(scriptFile, ForReading)

57 Chapter 3 Adding Intelligence
Set objCommentFile = objFSO.OpenTextFile(commentFile, _

ForWriting, TRUE)

Do While objScriptFile.AtEndOfStream <> TRUE

strCurrentLine = objScriptFile.ReadLine

intIsComment = Instr(1,strCurrentLine,"'")

If intIsComment > 0 Then

objCommentFile.Write strCurrentLine & VbCrLf

End If

Loop

WScript.Echo("script complete")

objScriptFile.Close

objCommentFile.Close

Just the Steps To implement If…Then

1. On a new line in the script, type If some condition Then.

2. On the next line, enter the command you want to invoke.

3. On the next line, type End If.

Header Information

The first few lines of the GetComments.vbs script contain the header information. We use
Option Explicit to force us to declare all the variables used in the script. This helps to ensure
that you spell the variables correctly as well as understand the logic. On Error Resume Next is
rudimentary error handling. It tells VBScript to go to the next line in the script when there is
an error. There are times, however, when you do not want this behavior, such as when you
copy a file to another location prior to performing a delete operation. It would be disastrous if
the copy operation failed but the delete worked.

After you define the two constants, you define the variables. Listing variables on individual
lines makes commenting the lines in the script easier, and the commenting lets readers of the
script know why the variables are being used. In reality, it doesn’t matter where you define
variables, because the compiler reads the entire script prior to executing it. This means you
can spread constant and variable declarations all over the script any way you want—such an
approach would be hard for humans to read, but it would make no difference to VBScript.

Reference Information

In the Reference information section of the script, you define constants and assign values to
several of the variables previously declared.

The lines beginning with Const of the GetComments.vbs script define two constants,
ForReading and ForWriting, which make the script easier to read. (You learned about constants
in Chapter 2.) You’ll use them when you open the DisplayComputerNames.vbs file and the
comments.txt file from the ch03 folder on the CD. You could have just used the numbers 1
and 2 in your command and skipped the two constants; however, someone reading the script

58 Part I Covering the Basics
needs to know what the numbers are doing. Because these values will never change, it is more
efficient to define a constant instead of using a variable. This is because the computer knows
that you will only store two small numbers in these two constants. On the other hand, if we
declared these two as variables, then the operating system would need to reserve enough
memory to hold anything from a small number to an entire object. These varients (as they are
called) are easy on programmers, but are wasteful of memory resources. But it is, after all, just
a scripting language. If we were really concerned about efficiency, and conservation of
resources, we would be writing in C++.

The name of the file you are extracting comments from is stored in the variable scriptFile. By
using the variable in this way it becomes easy to modify the script later so that you can either
point it to another file or make the script read all the scripts in an entire folder. In addition,
you could make the script use a command-line option that specifies the name of the script to
parse for comments. However, by assigning a variable to the script file name, you make all
those options possible without a whole lot of rewriting. This is also where you name the file
used to write the comments into—the aptly named comments.txt file.

Quick Check

Q. Is it permissible to have If on one line and Then on a separate line?

A. No. Both If and Then must be on the same logical line. They can be on separate physical
lines if the line continuation character (_) is used. Typically, If is the first word and Then is
the last command on the line.

Q. If the Then clause is on a separate logical line from the If…Then statement, what com­
mand do you use?

A. End If. The key here is that End If consists of two words, not one.

Q. What is the main reason for using constants?

A. Constants have their value set prior to script execution, and therefore their value does not
change during the running of the script.

Q. What are two pieces of information required by the OpenTextFile command?

A. OpenTextFile requires both the name of the file and whether you want to read or write.

Worker and Output Information

The Worker and Output information section is the core engine of the script, where the actual
work is being done. You use the Set command three times, as shown here:

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objScriptFile = objFSO.OpenTextFile _

(scriptFile, ForReading)

Set objCommentFile = objFSO.OpenTextFile(commentFile, _

ForWriting, TRUE)

59 Chapter 3 Adding Intelligence
Regarding the first Set command, you’ve seen objFSO used several times already in Chapter 2.
objFSO is a variable name, which we routinely assign to our connection to the file system, that
allows us to read and write to files. You have to create the file system object object (as it is tech­
nically called) to be able to open text files.

The second Set command uses our objScriptFile variable name to allow us to read the Display-
ComputerNames.vbs file. Note that the OpenTextFile command requires only one piece of
information: the name of the file. VBScript will assume you are opening the file for reading if
you don’t include the optional file mode information. We are going to specify two bits of infor­
mation so that the script is easier to understand:

■ The name of the file

■ How you want to use the file—that is, read or write to it

By using variables for these two parts of the OpenTextFile command, you make the script
much more flexible and readable.

The third Set command follows the same pattern. You assign the objCommentFile variable to
whatever comes back from the openTextFile command. In this instance, however, you write to
the file instead of read from it. You also use variables for the name of the comment file and for
the option used to specify writing to the file.

The GetComments.vbs script reads each line of the DisplayComputerNames.vbs file and
checks for the presence of a single quotation mark ('). When the single quotation mark is
present, the script writes the line that contains that character out to the comments.txt file.

A closer examination of the Worker and Output information section of the GetComments.vbs
script reveals that it begins with Do While…Loop, as shown here:

Do While objScriptFile.AtEndOfStream <> TRUE

strCurrentLine = objScriptFile.ReadLine

intIsComment = InStr(1,strCurrentLine,"'")

If intIsComment > 0 Then

objCommentFile.Write strCurrentLine & vbCrLf

End If

Loop

WScript.Echo("script complete")

objScriptFile.Close

objCommentFile.Close

You first heard about the Do While statement in Chapter 2. ObjScriptFile contains a textStream
Object. This object was created when we used the openTextFile method from the fileSystem
Object. The textStreamObject has a property that is called atEndOfStream. As long as you aren’t
at the end of the text stream, the script reads the line of text and sees whether it contains a sin­
gle quotation mark. AtEndOfStream is a property. It describes a physical location. Of course,
we do not know where AtEndOfStream is located, so we use Do While to loop around until it
finds the end of the stream.

60 Part I Covering the Basics
To check for the presence of the <'> character, you use the InStr function, just as discussed in
Chapter 2. The InStr function returns a zero when it does not find the character; when it does
find the character, it returns a number representing the location in the line of text that the
character was found.

If InStr finds the <'> character within the line of text, the variable intIsComment holds a num­
ber that is larger than zero. Therefore, you use the If…Then construct, as shown in the follow­
ing code, to write out the line to the comments.txt file:

If intIsComment > 0 Then

objCommentFile.Write strCurrentLine & vbCrLf

End If

Notice that the condition to be evaluated is contained within If…Then. If the variable intIsCom­
ment is larger than zero, you take the action on the next line. Here you use the Write command
to write out the current line of the DisplayComputerNames.vbs file.

Use the Timer function to see how long the script runs

1.	 Open the GetComments.vbs script in Microsoft Notepad or the script editor of your
choice.

2.	 Save the script as YourNameGetCommentsTimed.vbs.

3.	 Declare two new variables: startTime and endTime. Put these variables at the bottom of
your list of variables, and before the constants. It will look like:

Dim startTime, endTime

4.	 Right before the line where you create the FilesystemObject and set it to the objFSO vari­
able, assign the value of the Timer function to the startTime variable. It will look like the
following:

startTime = Timer

5.	 Right before the script complete line, assign the value of timer to the endTime variable. It
will look like:

endTime = Timer

6.	 Now edit the script complete line to include the time it took to run. Use the ROUND func­
tion to round off the time to two decimal places. The line will look like the following:

WScript.Echo "script complete. " & round(endTime-startTime, 2)

7.	 Save and run your script. Compare your script with GetCommentsTimed.vbs in

\My Documents\Microsoft Press\VBScriptSBS\ch03 if desired.

61 Chapter 3 Adding Intelligence
Intrinsic Constants
You use the vbCrLf command to perform what is called a carriage return and line feed.
vbCrLf is an intrinsic constant, which means that it is a constant that is built into
VBScript. Because intrinsic constants are built into VBScript, you don’t need to define
them as you do regular constants. You’ll use other intrinsic constants as you continue to
develop scripts in VBScript language in later chapters.

vbCrLf has its roots in the old-fashioned manual typewriter. Those things had a handle
on the end that rolled the plate up one or two lines (the line feed) and then repositioned
the type head (the carriage return). Like the typewriter handle, the vbCrLf command
positions the text to the first position on the following line. It’s a very useful command
for formatting text in both dialog boxes and text files. The last line in our If…Then con­
struct is the End If command. End If tells VBScript that we’re finished using the If…Then
command. If you don’t include End If, VBScript complains with an error.

The Platform SDK documents many other intrinsic constants that we can use with
VBScript. Besides vbCrLf, the one I use the most is vbTab, which will tab over the default
tab stop. It is helpful for indenting output. You can look up others in the Scripts56.chm file
included in the Resources folder on the CD-ROM by searching for “intrinsic constants.”

After using End If, you have the Loop command on a line by itself. The Loop command belongs
to the Do While construct that began the Worker and Output information section. Loop sends
the script execution back to the Do While line. VBScript continues to loop through, reading
the text file and looking for ' marks, as long as it doesn’t reach the end of the text stream.
When VBScript reaches the end of the text stream from the DisplayComputerNames script, a
message displays saying that you’re finished processing the script. This is important, because
otherwise there would be no indication that the script has concluded running. You then close
your two files and the script is done. In reality, you don’t need to close the files because they
will automatically close once the script exits memory, but closing the files is good practice and
could help to avoid problems if the script hangs.

Making a decision using If…Then

1.	 Open Notepad or the script editor of your choice. Navigate to the blankTemplate.vbs
template in the \My Documents\Microsoft Press\VBScriptSBS\Templates directory.

2.	 Save the template as YourNameConvertToGig.vbs.

3.	 On the first non-commented line, type Option Explicit.

4.	 On the next line, declare the variable intMemory.

5.	 The next line begins the Reference section. Assign the value 120,000 to the intMemory
variable. It will look like the following:

intMemory = 120000

62 Part I Covering the Basics
6.	 Use the formatNumber function to remove all but the last two digits after the decimal
place. It will look like the following:

intMemory = formatNumber(intMemory/1024)

7.	 If the value of intMemory is greater than 1024, then we want to convert it to gigabytes,
print out the value, and then exit the script. We will use formatNumber to clean up the
trailing decimal places. Your code will look like the following:

If intMemory > 1024 Then

intMemory = formatNumber(intMemory/1024) & " Gigabytes"

WScript.Echo intMemory

WScript.quit

End If

8.	 Under the If…Then End If construction, we assign the value to intMemory, as seen below.

intMemory = intMemory & " Megabytes"

9.	 Then we echo out the value of intMemory, as seen below:

WScript.Echo intMemory

10.	 Save and run the script. Compare your results to ConvertToGig.vbs in the folder \My
Documents\Microsoft Press\VBScriptSBS\ch03.

If…Then…ElseIf
If…Then…ElseIf adds some flexibility to your ability to make decisions by using VBScript.
If…Then enables you to evaluate one condition and take action based on that condition. By
adding ElseIf to the mixture, you can make multiple decisions. You do this in the same way
you did it using the If…Then command. You start out with an If…Then on the first line in the
Worker information section, and when you are finished, you end the If…Then section with End
If. If you need to make additional evaluations, add a line with ElseIf and the condition.

Just the Steps To Use If…Then…ElseIf

1. On a new line in the script, type If some condition Then.

2. On the next line, enter the command you want to invoke.

3. On the next line, type ElseIf and the new condition to check, and end the line with Then.

4. On the next line, enter the command you want to invoke when the condition on the
ElseIf line is true.

5. Repeat steps 3 and 4 as required.

6. On the next line, type End If.

63 Chapter 3 Adding Intelligence
You can have as many ElseIf lines as you need; however, if you use more than one or two, the
script can get long and confusing. A better solution to avoid a long script is to convert to a
Select Case type of structure, which is covered later in this chapter in the “Select Case” section.

Using the message box msgBox.vbs

1.	 Open Notepad or the script editor of your choice.

2.	 Define four variables that will hold the following: the title of the message box, the
prompt for the message box, the button configuration, and the return code from the
message box. The variables I used are strPrompt, strTitle, intBTN, intRTN. They are
declared as follows:

Dim strPrompt

Dim strTitle

Dim intBTN

Dim intRTN

3.	 Assign values to the first three variables. strPrompt is what you want to display to the
user. The title will appear at the top of the message box. The value contained in strTitle
will appear at the top of the message box. The variable intBTN is used to control the style
of the buttons you want displayed.

strPrompt = "Do you want to run the script?"

strTitle = "MsgBOX DEMO"

intBTN = 3 '4 is yes/no 3 is yes/no/cancel

4.	 Now write the code to display the message box. To do this, we will use intRTN to capture
the return code from pressing the button. We will use each of our three message box
variables as well and the msgBox function. The line of code looks like the following:

intRTN = MsgBox(strprompt,intBTN,strTitle)

5.	 If you run the script right now, it will run and display a message box, but you are not
evaluating the outcome. To do that, we will use If…Then…Else to evaluate the return
code. It will look like the following:

If intRTN = vbYes Then

WScript.Echo "yes was pressed"

ElseIf intRTN = vbNo Then

WScript.Echo "no was pressed"

ElseIf intRTN = vbCancel Then

WScript.Echo "cancel was pressed"

Else

WScript.Echo intRTN & " was pressed"

End If

6.	 Save the script as YourNameMsgBox.vbs and run it. It should tell you which button was
pressed from the message box. You would then tie in the code to the appropriate button
instead of just echoing the return values. Compare your code with msgBox.vbs in the
folder \My Documents\Microsoft Press\VBScriptSBS\ch03 if required.

64 Part I Covering the Basics
Let’s examine a script that uses If…Then…ElseIf to detect the type of central processing unit
(CPU) that is installed in a computer. Here is the CPUType.vbs script from the ch03 folder on
the CD.

CPUType.vbs
Option Explicit

On Error Resume Next

Dim strComputer

Dim cpu

Dim wmiRoot

Dim objWMIService

Dim ObjProcessor

strComputer = "."

cpu = "win32_Processor='CPU0'"

wmiRoot = "winmgmts:\\" & strComputer & "\root\cimv2"

Set objWMIService = GetObject(wmiRoot)

Set objProcessor = objWMIService.Get(cpu)

If objProcessor.Architecture = 0 Then

WScript.Echo "This is an x86 cpu."

ElseIf objProcessor.Architecture = 1 Then

WScript.Echo "This is a MIPS cpu."

ElseIf objProcessor.Architecture = 2 Then

WScript.Echo "This is an Alpha cpu."

ElseIf objProcessor.Architecture = 3 Then

WScript.Echo "This is a PowerPC cpu."

ElseIf objProcessor.Architecture = 6 Then

WScript.Echo "This is an ia64 cpu."

Else

WScript.Echo "Cannot determine cpu type."

End If

Header Information

The Header information section contains the usual information (discussed in Chapters 1 and
2), as shown here:

Option Explicit

On Error Resume Next

Dim strComputer

Dim cpu

Dim wmiRoot

Dim objWMIService

Dim objProcessor

Option Explicit tells VBScript that you’ll name all the variables used in the script by using the
Dim command. On Error Resume Next turns on basic error handling. The strComputer variable
holds the name of the computer from which we will perform the Windows Management
Instrumentation (WMI) query. The cpu variable tells VBScript where in WMI we will go to
read the information.

The wmiRoot variable enables you to perform a task you haven’t performed before in previous
scripts: split out the connection portion of WMI to make it easier to change and more read­

65 Chapter 3 Adding Intelligence
able. The variables objWMIService and objProcessor hold information that comes back from the
Reference information section.

Reference Information

The Reference information section is the place where you assign values to the variables you
named earlier in the script. The CPUType.vbs script contains these assignments:

strComputer = "."

cpu = "win32_Processor.deviceID='CPU0'"

wmiRoot = "winmgmts:\\" & strComputer & "\root\cimv2"

strComputer is equal to ".", which is a shorthand notation for the local computer that the script is
currently executing on. With the cpu variable, you define the place in WMI that contains infor­
mation about processors, which is win32_Processor. Because there can be more than one proces­
sor on a machine, you further limit your query to CPU0. It is necessary to use CPU0 instead of
CPU1 because win32_Processor begins counting CPUs with 0, and although a computer always
has a CPU0, it does not always have a CPU1. DeviceID is the key value for the WIN32_Processor
WMI class. To connect to an individual instance of a processor, it is necessary to use the key
value. The key of a WMI class can be discovered using wmisdk_book.chm from
\My Documents\Microsoft Press\VBScriptSBS\resources, or by using the wbemTest.exe utility
from a CMD prompt. In this script, you’re only trying to determine the type of CPU running on
the machine, so it isn’t necessary to identify all CPUs on the machine.

Worker and Output Information

The first part of the script declared the variables to be used in the script, and the second part
of the script assigned values to some of the variables. In the next section, you use those vari­
ables in an If…Then…ElseIf construction to make a decision about the type of CPU installed on
the computer.

The Worker and Output information section of the CPUType.vbs script is listed here:

Set objWMIService = GetObject(wmiRoot)

Set objProcessor = objWMIService.Get(cpu)

If objProcessor.Architecture = 0 Then

WScript.Echo "This is an x86 cpu."

ElseIf objProcessor.Architecture = 1 Then

WScript.Echo "This is a MIPS cpu."

ElseIf objProcessor.Architecture = 2 Then

WScript.Echo "This is an Alpha cpu."

ElseIf objProcessor.Architecture = 3 Then

WScript.Echo "This is a PowerPC cpu."

ElseIf objProcessor.Architecture = 6 Then

WScript.Echo "This is an ia64 cpu."

Else

WScript.Echo "Cannot determine cpu type."

End If

66 Part I Covering the Basics
To write a script like this, you need to know how win32_Processor hands back information so
that you can determine what a 0, 1, 2, 3, or 6 means. By detailing that information in an
If…Then…ElseIf construct, you can translate the data into useful information.

The first two lines listed in the preceding script work just like a normal If…Then statement.
The line begins with If and ends with Then. In the middle of the If…Then language is the state­
ment you want to evaluate. If objProcessor returns a zero when asked about the architecture,
you know the CPU is an x86, and you use WScript.Echo to print out that data.

If, on the other hand, objProcessor returns a one, you know that the CPU type is a millions of
instructions per second (MIPS). By adding into the ElseIf statements the results of your
research into return codes for WMI CPU types, you enable the script to handle the work of
finding out what kind of CPU your servers are running. After you’ve used all the ElseIf state­
ments required to parse all the possible return codes, you add one more line to cover the
potential of an unexplained code, and you use Else for that purpose.

Combine msgBox and CPU information

1.	 Open Notepad or the script editor of your choice.

2.	 Open the msgBox.vbs script and save it as YourNamePromptCPU.vbs.

3.	 At the very bottom of the newly renamed msgBox.vbs script, type Sub subCPU, as seen
below:

Sub subCPU

4.	 Open the CPUType.vbs script and copy the entire script to the clipboard.

5.	 Paste the entire CPUType.vbs script under the words Sub subCPU.

6.	 The first and second lines (from the CPUType.vbs script) that are pasted below the

words Sub subCPU are not required in our subroutine. The two lines can be deleted.

They are listed below:

Option Explicit

On Error Resume Next

7.	 Go to the bottom of the script you pasted under the words Sub subCPU and type End
sub. We have now moved the CPU-type script into a subroutine. We will only enter this
subroutine if the user presses the Yes button.

8.	 Under the code that evaluates the vbYes intrinsic constant, we want to add the line to call
the subroutine. To do this, we simply type the name of the subroutine. That name is
subCPU. The code to launch the script is seen below. Notice the only new code here is
the word subCPU, everything else was already in the msgBox script.

If intRTN = vbYes Then

WScript.Echo "yes was pressed"

subCPU

67 Chapter 3 Adding Intelligence
9.	 For every other button selection, we want to end the script. The command to do that is
WScript.quit. We will need to type this command in three different places, as seen below:

ElseIf intRTN = vbNo Then

WScript.Echo "no was pressed"

WScript.quit

ElseIf intRTN = vbCancel Then

WScript.Echo "cancel was pressed"

WScript.quit

Else

WScript.Echo intRTN & " was pressed"

WScript.quit

End If

10.	 Save and run the script. Press the Yes button, and the results from CPUType should be
displayed. Run the script two more times: Press No, and then press Cancel. On each suc­
cessive running, the script should exit instead of running the script. If these are not your
results, compare the script with the PromptCPU.vbs script in the folder \My Docu­
ments\Microsoft Press\VBScriptSBS\ch03.

Quick Check

Q. How many ElseIf lines can be used in a script?

A. As many ElseIf lines as are needed.

Q. If more than one or two ElseIf lines are necessary, is there another construct that would
be easier to use?

A. Yes. Use a Select Case type of structure.

Q. What is the effect of using strComputer = "." in a script?

A. The code strComputer is shorthand that means the local computer the script is executing
on. It is used with WMI.

If…Then…Else
It is important to point out here that you can use If…Then…Else without the intervening ElseIf
commands. In such a construction, you give the script the ability to make a choice between
two options.

Just the Steps To use If…Then…Else

1. On a new line in the script, type If some condition Then.

2. On the next line, enter the command you want to invoke.

3. On the next line, type Else.

68 Part I Covering the Basics
4. On the next line, type the alternate command you want to execute when the condition
is not true.

5. On the next line, type End If.

The use of If…Then…Else is illustrated in the following code:

ifThenElse.vbs
Option Explicit

On Error Resume Next

Dim a,b,c,d

a = 1

b = 2

c = 3

d = 4

If a + b = d Then

WScript.Echo (a & " + " & b & " is equal to " & d)

Else

WScript.Echo (a & " + " & b & " is equal to " & c)

End If

In the preceding ifThenElse.vbs script, you declare your four variables on one line. You can do
this for simple scripts such as this one. It can also be done for routine variables that are asso­
ciated with one another, such as objWMIService and objProcessor from your earlier script. The
advantage of putting multiple declarations on the same line is that it makes the script shorter.
Although this does not really have an impact on performance, it can at times make the script
easier to read. You’ll need to make that call—does making the script shorter make the script
easier to read, or does having each variable on a separate line with individual comments make
the script easier to read?

When you do the WScript.Echo command, you’re using a feature called concatenation, which
puts together an output line by using a combination of variables and string text. Notice that
everything is placed inside the parentheses and that the variables do not go inside quotation
marks. To concatenate the text into one line, you can use the ampersand character (&).
Because concatenation does not automatically include spaces, you have to put in the appropri­
ate spaces inside the quotation marks. By doing this, you can include a lot of information in
the output. This is one area that requires special attention when you’re modifying existing
scripts. You might need to change only one or two variables in the script, but modifying the
accompanying text strings often requires the most work.

Using If…Then…Else to fix the syntax of output

1.	 Open the QueryAllProcessors.vbs script in the folder \My Documents\Microsoft
Press\VBScriptSBS\ch03 using Notepad or the script editor of your choice. Save it as
YourNameQueryAllProcessorsSyntax.vbs.

69 Chapter 3 Adding Intelligence
2.	 Put a new function definition at the end of the script. (We will discuss user defined func­
tions in just a few pages.) Use the word Function and give it the name funIS. Assign the
input parameter the name intIN. The syntax for this line will look like the following:

Function funIS(intIN)

3.	 Space down a few lines and end the function with the words End Function. This com­
mand will look like the following:

End Function

4. Use If…Then to see if the intIN parameter is less than two. This line will look like:

If intIN <2 Then

5.	 If the intIN parameter is less than two, then we want to assign the string “is a” the
numeric value of intIN and the word Processor. The result will be that the script will use
the singular form of the verb to be. This is seen in the line below:

funIS = " is a " & intIN & " Processor "

6.	 If this is not the case, we will assign the string “are” and the number of processors to the
name of the function. Finally we close out the If…Then construction by using End If. This
is seen below:

Else

funIS = " are " & intIN & " Processors "

End If

7.	 Right after we assign the colItems variable to contain the object that comes back from
using the execQuery method, we want to retrieve the count of the number of items in
colItems. We also want to build an output string that prints out a string stating how
many processors are on the machine. We will use the funIS function to build up the
remainder of the output line. It will look like the following:

WScript.Echo "There" & funIS(colItems.count) & _

"on this computer"

8.	 Save and run the script. You may want to compare your results with the QueryAllProces­
sorsSyntax.vbs script in the folder \My Documents\Microsoft
Press\VBScriptSBS\ch03.

Select Case
When I see a Select Case statement in a script written in the VBScript language, my respect for
the script writer goes up at least one notch. Most beginning script writers can figure out the
If…Then statement, and some even get the If…Then…Else construction down. However, few
master the Select Case construction. This is really a shame, because Select Case is both elegant

70 Part I Covering the Basics
and powerful. Luckily for you, I love Select Case and you will be masters of this construction by
the end of this chapter!

Just the Steps To use Select Case

1. On a new line in the script, type Select Case and a variable to evaluate.

2. On the second line, type Case 0.

3. On the third line, assign a value to a variable.

4. On the next line, type Case 1.

5. On a new line, assign a value to a variable.

6. On the next line, type End Select.

In the following script, you again use WMI to obtain information about your computer. This
script is used to tell us the role that the computer plays on a network (that is, whether it’s a
domain controller, a member server, or a member workstation). You need to use Select Case to
parse the results that come back from WMI, because the answer is returned in the form of 0,
1, 2, 3, 4, or 5. Six options would be too messy for an If…Then…ElseIf construction. The text of
ComputerRoles.vbs is listed here:

ComputerRoles.vbs
Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiRoot

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiRoot = "winmgmts:\\" & strComputer & "\root\cimv2"

wmiQuery = "Select DomainRole from Win32_ComputerSystem"

Set objWMIService = GetObject(wmiRoot)

Set colItems = objWMIService.ExecQuery _

(wmiQuery)

For Each objItem in colItems

WScript.Echo funComputerRole(objItem.DomainRole)

Next

Function funComputerRole(intIN)

Select Case intIN

Case 0

funComputerRole = "Standalone Workstation"

Case 1

funComputerRole = "Member Workstation"

Case 2

funComputerRole = "Standalone Server"

71 Chapter 3 Adding Intelligence
Case 3

funComputerRole = "Member Server"

Case 4

funComputerRole = "Backup Domain Controller"

Case 5

funComputerRole = "Primary Domain Controller"

Case Else

funComputerRole = "Look this one up in SDK"

End Select

End Function

Header Information

The Header information section of ComputerRoles.vbs is listed in the next bit of code. Notice
that you start with the Option Explicit and On Error Resume Next statements, which are
explained earlier in this chapter and in detail in Chapter 1, “Starting from Scratch.” Next, you
declare six variables. wmiQuery is, however, a different variable. You’ll use it in the Reference
information section, where you”ll assign a WMI query string to it. By declaring a variable and
listing it separately, you can change the WMI query without having to rewrite the entire script.

objWMIService is used to hold your connection to WMI, and the variable colItems holds a col­
lection of items that comes back from the WMI query. objItem is used to obtain an individual
item from the collection. This was discussed in Chapter 2. The complete Header information
section is listed below:

Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiRoot

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

Reference Information

The Reference information section assigns values to many of the variables named in the
Header information part of ComputerRoles.vbs. The Reference information section of the
script is listed here:

strComputer = "."

wmiRoot = "winmgmts:\\" & strComputer & "\root\cimv2"

wmiQuery = "Select DomainRole from Win32_ComputerSystem"

Two variables are unique to this script, the first of which is wmiQuery. In the Collection-
OfDrives.vbs script discussed in Chapter 2, you embedded the WMI query in the GetObject
command, which makes for a long line. By bringing the query out of the GetObject command
and assigning it to the wmiQuery variable, you make the script easier to read and modify in the

72 Part I Covering the Basics
future. Next, you use the colItems variable and assign it to hold the object that is returned
when you actually execute the WMI query.

Quick Check

Q. How is Select Case implemented?

A. Select Case begins with the Select Case command and a variable to be evaluated. How­
ever, it is often preceded by a For Each statement.

Q. How does Select Case work?

A. Select Case evaluates the test expression following the Select Case statement. If the result
from this matches a value in any of the Case statements, it executes the code following
that Case statement.

Q. What is the advantage of assigning a WMI query to a variable?

A. It provides the ability to easily use the script to query additional information from WMI.

Worker and Output Information

As mentioned earlier, WMI often returns information in the form of a collection (we talked
about this in Chapter 2), and to work your way through a collection, you need to use the For
Each…Next command structure to pull out specific information. In the Worker information
section of ComputerRoles.vbs, you begin with making a connection into WMI. We do this by
using GetObject to obtain a hook into WMI. Once we have made the connection into WMI, we
then execute a WMI query and assign the resulting collection of items to a variable called
colItems. We then use For Each…Next to pull one instance of an item from the collection so we
can examine it. This is illustrated in code below. The interesting thing is the way we moved the
Select Case statement from the middle of the script into a function called funComputerRole.

Set objWMIService = GetObject(wmiRoot)

Set colItems = objWMIService.ExecQuery _

(wmiQuery)

For Each objItem in colItems

WScript.Echo funComputerRole(objItem.DomainRole)

Next

funComputerRole function

To simplify the reading of the script, and to make it easier to maintain the script, we move the
Select Case structure into a function we include at the bottom of the script. This moves the
decision matrix out of the middle of the Worker section. It vastly simplifies the code (once, of
course, you understand how a function works). In Figure 3-1, you can see that when we call
the function, we use the name of the function. In parentheses, we include the parameter we
wish to supply to the function. In the ComputerRoles.vbs script, we are retrieving a numeric
value that corresponds to the role the computer plays in the network. If you look up the

73 Chapter 3 Adding Intelligence
WIN32_computerSystem class in the WMI Platform SDK (\My Documents\Microsoft
Press\VBScriptSBS\Resources\WMI_SDKBook.chm), you will see an article that lists all
the valuable properties this class can supply. I have copied the values for domain role into
Table 3-1. Based on the chart that translates the values for computer role, I created the
funComputerRole function.

The “blablabla” string, newly assigned to the
funComputerRole function NAME, is now passed
back where it REPLACES the
FunComputerRole(objItem.DomainRole) stuff.

FunComputerRole(objItem.DomainRole)

Function funComputerRole(intIN)
 SelectCase intIN Inside Function funComputerRole is known as intIN.

 funComputerRole = “blablabla”
If the case matches, then the string “blablabla” is
assigned to the NAME of the function.

End FUNCTION

Figure 3-1 Assign value to name of the function

In Figure 3-1, you see how the numeric value of the computer role is passed to the funCompu­
terRole function. Once the number is inside the function, it is stored in the variable intIN. The
Select Case statement evaluates the value of intIN and assigns the appropriate string to the
name of the function itself. As you can see in Figure 3-1, the value that is assigned to the name
of the function is passed back to the line of code that called the function in the first place. The
funComputerRole function is listed below.

Function funComputerRole(intIN)

Select Case intIN

Case 0

funComputerRole = "Standalone Workstation"

Case 1

funComputerRole = "Member Workstation"

Case 2

funComputerRole = "Standalone Server"

Case 3

funComputerRole = "Member Server"

Case 4

funComputerRole = "Backup Domain Controller"

Case 5

funComputerRole = "Primary Domain Controller"

Case Else

funComputerRole = "Look this one up in SDK"

End Select

End Function

To find out how the DomainRole field is structured, you need to reference the Platform SDK
for Microsoft Windows Server 2003. You will also be able to find other properties you can use

74 Part I Covering the Basics
to expand upon the ComputerRoles.vbs script. The value descriptions for domain roles are
shown in Table 3-1.

Table 3-1 WMI Domain Roles from Win32_ComputerSystem

Value Meaning

0 Standalone workstation

1 Member workstation

2 Standalone server

3 Member server

4 Backup domain controller

5 Primary domain controller

The first line of the Select Case statement contains the test expression—the number represent­
ing the role of the computer on the network. Each successive Case statement is used to evalu­
ate the test expression, and to identify the correct computer role. The first of these statements
is seen here:

Case 0

strComputerRole = "Standalone Workstation"

The strComputerRole variable will be assigned the phrase “Standalone Workstation” if the text
expression (intIN) is equal to 0. You will then use strComputerRole to echo out the role of the
computer in the domain when we exit the Select Case construction.

You end the Select Case construction with End Select, similarly to the way you ended the
If…Then statement with End If. After you use End Select, you use the WScript.Echo command to
send the value of strComputerRole out to the user. Remember that the entire purpose of the
Select Case construction in ComputerRoles.vbs is to find and assign the DomainRole value to
the strComputerRole variable. After this is accomplished, you use the Next command to feed
back into the For Each loop used to begin the script.

Modifying CPUType.vbs Step-by-Step Exercises
In this section, you will modify CPUType.vbs so that it uses a Select Case format instead of
multiple If…Then…ElseIf statements. This is a valuable skill, because many of the scripts you
will find have a tendency to use multiple If…Then…ElseIf statements. As you will see, it is rela­
tively easy to make the modification to using Select Case. The key to success is to remove as lit­
tle of the original code as possible.

1.	 Open CPUTypeStarter.vbs and save it as YourNameCPUType.vbs. It is located in the
\My Documents\Microsoft Press\VBScriptSBS\Ch03\StepByStep folder.

2.	 Turn off On Error Resume Next by commenting out the line.

75 Chapter 3 Adding Intelligence
3.	 Turn the If…Then line into a Select Case statement. The only element you must keep from
this line is objProcessor.Architecture, because it is hard to type. When you are finished,
your Select Case line looks like the following:

Select Case objProcessor.Architecture

4.	 Start your case evaluation. If objProcessor.Architecture = 0, you know that the processor is
an x86. So your first case is Case 0. That is all you put on the next line. It looks like this:

Case 0

5.	 Leave the WScript.Echo line alone.

6.	 ElseIf objProcessor.Architecture = 1 becomes Case 1, which is a MIPS CPU. Delete the entire
ElseIf line and enter Case 1.

7.	 Leave the WScript.Echo line alone.

ElseIf objProcessor.Architecture = 2 becomes simply Case 2, as you can see here:

Case 2

Up to this point, your Select Case configuration looks like the following:

Select Case objProcessor.Architecture

Case 0

WScript.Echo "This is an x86 cpu."

Case 1

WScript.Echo "This is a MIPS cpu."

Case 2

WScript.Echo "This is an Alpha cpu."

8.	 Modify the "ElseIf objProcessor.Architecture = 3 Then" line so that it becomes Case 3.

9.	 Leave the WScript.Echo line alone.

The next case is not Case 4, but rather Case 6, because you modify the following line:
"ElseIf objProcessor.Architecture = 6 Then". The Select Case construction now looks like the
following:

Select Case objProcessor.Architecture

Case 0

WScript.Echo "This is an x86 cpu."

Case 1

WScript.Echo "This is a MIPS cpu."

Case 2

WScript.Echo "This is an Alpha cpu."

Case 3

WScript.Echo "This is a PowerPC cpu."

Case 6

WScript.Echo "This is an ia64 cpu."

10.	 You have one more case to evaluate, and it will take the place of the Else command,
which encompasses everything else that has not yet been listed. You implement Case
Else by changing the Else to Case Else.

76 Part I Covering the Basics
11.	 Leave the line WScript.Echo "Cannot determine cpu type" alone.

12.	 Change End If to End Select. Now you’re finished with the conversion of If…Then…ElseIf
to Select Case.

13.	 Save the file and run the script. If you need assistance, refer to the CPUTypeSolution.vbs
script in the same folder you found the starter script.

One Step Further: Modifying ComputerRoles.vbs
In this lab, you’ll modify ComputerRoles.vbs so that you can use it to turn on Dynamic Host
Configuration Protocol (DHCP) on various workstations. This is the first script we use that
calls a WMI method.

Scenario

Your company’s network was set up by someone who really did not understand DHCP. In
fact, the person who set up the network probably could not even spell DHCP, and as a result
every workstation on the network is configured with a static IP address. This was bad enough
when the network only had a hundred workstations, but the network has grown to more than
three hundred workstations within the past couple of years. The Microsoft Excel spreadsheet
that used to keep track of the mappings between computer names and IP addresses is woe­
fully out of date, which in the past month alone has resulted in nearly 30 calls to the help desk
that were traced back to addressing conflicts. To make matters worse, some of the helpful
administrative assistants have learned to change the last octet in Transmission Control Proto­
col/Internet Protocol (TCP/IP) properties, which basically negates any hope of ever regaining
a managed network. Your task, if you should choose to accept it, is to create a script (or
scripts) that will do the following:

■	 Use WMI to determine the computer’s role on the network and to print out the name of
the computer, the domain name (if it is a member of a domain), and the user that
belongs to the computer

■	 Use WMI to enable DHCP on all network adapters installed on the computer that use
TCP/IP

Your research has revealed that you can use Win32_ComputerSystem WMI class to obtain the
information required in the first part of the assignment.

Warning Keep in mind, this script will change network settings on the machine that this
script runs on. Also, when run, it will need administrator rights to make the configuration
changes. If you do not wish to change your TCP/IP settings, then do not run this script on your
machine.

77 Chapter 3 Adding Intelligence
Part A

1.	 Open up the ComputerRoles.vbs file from \My Documents\Microsoft PressVB

ScriptSBS\Ch03\OneStepFurther and save it as YourNameComputerRoles

Solution.vbs.

2.	 Comment out On Error Resume Next so that you will receive some meaningful feedback
from the Windows Script Host (WSH) run time.

3.	 Dim new variables to hold the following items:

❑	 strcomputerName

❑	 strDomainName

❑	 strUserName

4.	 Modify wmiQuery so that it returns more than just DomainRole from
Win32_ComputerSystem. Hint: Change DomainRole to a wildcard such as *. The original
wmiQuery line is seen below:

wmiQuery = "Select DomainRole from Win32_ComputerSystem"

The new line looks like this:

"Select * from Win32_ComputerSystem"

5.	 Because colComputers is a collection, you can’t directly query it. You’ll need to use For
Each…Next to give yourself a single instance to work with. Therefore, the assignment of
your new variables to actual items will take place inside the For Each…Next loop. Assign
each of your new variables in the following manner:

❑	 strComputerName = objComputer.name

❑	 strDomainName = objComputer.Domain

❑	 strUserName = objComputer.UserName

6.	 After the completion of the Select Case statement (End Select) but before the Next com­
mand at the bottom of the file, use WScript.Echo to return the four items required by the
first part of the lab scenario. Use concatenation (by using the ampersand) to put the
four variables on a single line. Those four items are declared as follows:

❑	 Dim strComputerRole

❑	 Dim strcomputerName

❑	 Dim strDomainName

❑	 Dim strUserName

7.	 Save the file and run it.

78 Part I Covering the Basics
8.	 Modify the script so that each variable is returned on a separate line. Hint: Use the
intrinsic constant vbCrLf and the ampersand to concatenate the line. It will look some­
thing like this:

strComputerRole & vbCrLf & strComputerName

9.	 Save and run the file.

10.	 Use WScript.Echo to add and run a complete message similar to the following:

WScript.Echo(“all done”)

11.	 Save and run your script. If it does not run properly, compare it with
\My Documents\Microsoft PressVBScriptSBS\ch03\StepByStep\ComputerRoles
Solution.vbs.

Part B

1.	 Open the YourNameComputerRolesSolution.vbs file and save it as YourNameEn­

ableDHCPSolution.vbs.

2.	 Comment out On Error Resume Next so that you will receive some meaningful feedback
from the WSH run time.

3.	 Dim new variables to hold the new items required for this script. Hint: You can rename
the following items:

❑	 Dim colComputers

❑	 Dim objComputer

❑	 Dim strComputerRole

4.	 The new variables are listed here:

❑	 colNetAdapters

❑	 objNetAdapter

❑	 DHCPEnabled

5.	 Modify the wmiQuery so that it looks like the following:

wmiQuery = "Select * from Win32_NetworkAdapterConfiguration where IPEnabled=TRUE"

6.	 Change the following Set statement:

Set colComputers = objWMIService.ExecQuery (wmiQuery)

Now, instead of using colComputers, the statement uses colNetAdapters. The line will look
like the following:

Set colNetAdapters = objWMIService.ExecQuery (wmiQuery)

7.	 Delete the Select Case construction. It begins with the following line:

Select Case objComputer.DomainRole

And it ends with End Select.

79 Chapter 3 Adding Intelligence
8. You should now have the following:

For Each objComputer In colComputers

WScript.Echo strComputerRole

Next

9. Change the For Each line so that it reads as follows:

For Each objNetAdapter In colNetAdapters

10.	 Assign DHCPEnabled to objNetAdapter.EnableDHCP(). You can do it with the following:

DHCPEnabled = objNetAdapter.EnableDHCP()

11.	 Use If…Then…Else to decide whether the operation was successful. If DHCP is enabled,
DHCPEnabled will be 0, and you want to use WScript.Echo to echo out that the DHCP is
enabled. The code looks like the following:

If DHCPEnabled = 0 Then

WScript.Echo "DHCP has been enabled."

12.	 If DHCPEnabled is not set to 0, the procedure does not work. So you have your Else con­
dition. It looks like the following:

Else

WScript.Echo "DHCP could not be enabled."

End If

13.	 Conclude the script by using the Next command to complete the If…Then…Next con­
struction. You don’t have to put in a closing echo command, because you’re getting feed­
back from the DHCPEnabled commands.

14.	 Save and run the script. Compare your script with the EnableDHCPSolution.vbs script
in the \My Documents\Microsoft Press\VBScriptSBS\ch03\OneStepFurther folder.

Chapter 3 Quick Reference

To Do This

Evaluate a condition using If…Then Place the condition to be evaluated between the
words If and Then

Evaluate one condition with two outcomes Use If…Then…Else

End an If…Then…Else statement Use End If

Use an intrinsic constant in a script Type it into the code (it does not need to be de­
clared, or otherwise defined)

Evaluate one condition with three outcomes Use If…Then…ElseIf, or use Select Case

Evaluate one condition with four potential Use Select Case
outcomes

Chapter 4

Working with Arrays

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the fol­
lowing concepts from earlier chapters:

■ The For Each command

■ The Do Until command

■ The For…Next command

After completing this chapter, you will be able to:

■ Use command-line arguments to control code execution at run time

■ Use a text file in place of arguments to run a program against multiple machines

■ Create a useful error message when arguments are missing

■ Use named arguments to control the way multiple arguments are processed

■ Create an array to supply multiple values to a single variable

Passing Arguments
Passing arguments might sound like a technique to help people get along, but in reality it’s a
way to get additional information into a script. Command-line arguments are words or phrases
that follow the name of the script when it is run from the command line. In this section, you’ll
look at two methods for obtaining run time information: command-line arguments and text
file data. You can use these two sources of information to modify the way a script runs. Let’s
first look at command-line arguments and see how to change the behavior of a script.

Command-Line Arguments
Command-line arguments provide you with the ability to modify the execution of a script
prior to running it.
81

82 Part I Covering the Basics
Just the Steps To implement command-line arguments

1. On a new line, create a variable to hold WScript.Arguments.Item(0).

2. Use the variable holding WScript.Arguments.Item(0) as a normal variable.

In the Ping.vbs script, which you examined in Chapter 2, “Looping Through the Script,” and
which appears in the next code listing (minus the comments), you use the variable strMachines
to hold the target of the ping command. To ping other computers on the network, you have to
modify the values within the quotation marks ("loopback;127.0.0.1;localhost" in this instance).

Note In this and in other scripts, we leave out the Header information section (Option
Explicit, On Error Resume Next, and the DIM for the variables.) This is done so we can focus on
learning about command-line arguments and arrays (both rather complicated concepts). As
indicated in Chapter 1, “Starting from Scratch;” before moving a script into “production,” you
really should make sure it is fully documented and that it runs without error (which will mean
turning off On Error Resume Next by remarking it out), because this will save you much work if
you need to modify the script at a later date.

Modifying the values might be an acceptable solution when you always ping the same com­
puters, but when you want the flexibility of the normal command-line ping, a better script is
clearly called for—the command-line argument.

Ping.vbs
strMachines = "loopback;127.0.0.1;localhost"

aMachines = Split(strMachines, ";")

For Each machine In aMachines

Set objPing = GetObject("winmgmts:")._

ExecQuery("select * from Win32_PingStatus where address = '" _

& machine & "'")

For Each objStatus In objPing

If IsNull(objStatus.StatusCode) Or objStatus.StatusCode<>0 Then

WScript.Echo("machine " & machine & " is not reachable")

Else

WScript.Echo("reply from " & machine)

End If

Next

Next

Making the Change

To modify the Ping.vbs script to accept multiple computer names prior to running, you need
to make two modifications:

■ In the first non-commented line, delete "loopback;127.0.0.1;localhost".

■ Delete the addresses following strMachines = and add WScript.Arguments.Item(0).

83 Chapter 4 Working with Arrays
That’s all you need to do. The new script, named PingMultipleComputers.vbs, is shown here:

PingMultipleComputers.vbs
strMachines = WScript.Arguments.Item(0)

aMachines = Split(strMachines, ";")

For Each machine In aMachines

Set objPing = GetObject("winmgmts:")._

ExecQuery("select * from Win32_PingStatus where address = '"_

& machine & "'")

For Each objStatus In objPing

If IsNull(objStatus.StatusCode) Or objStatus.StatusCode<>0 Then

WScript.Echo("machine " & machine & " is not reachable")

Else

WScript.Echo("reply from " & machine)

End If

Next

Next

Running from the Command Prompt

To run the script, you go to the command prompt in the directory containing your script and
type the following:

Cscript pingMultipleComputers.vbs localHost;127.0.0.1;loopback

You use this syntax because of the Split function you used on the second line, which expects
a ";" to separate the computer names. If you change the ";" on the second line into a ";" as seen
in the next code line, you can use the comma character to separate the machine names and
have a slightly more orthodox command.

aMachines = Split(strMachines, ",")

Once this modification is made, the command-line syntax looks like the following:

Cscript pingMultipleComputers.vbs localHost,127.0.0.1,loopback

Quick Check

Q. To implement command-line arguments, what action needs to be performed?

A. Assign a variable to the command WScript.Arguments.Item(0).

Q. What is the function of the Split command?

A. The Split command can be used to parse a line of text based on a delimiter of your
choosing.

84 Part I Covering the Basics
No Arguments?

If a script tries to read command-line arguments not provided by the user, you get a Microsoft
Visual Basic, Scripting Edition (VBScript) runtime error that makes a rather vague reference to
“subscript out of range.” This error is illustrated in Figure 4-1.

Figure 4-1 When a Visual Basic script tries to read a command-line argument that was not sup­
plied, you get a “subscript out of range” error message

If another administrator is running your script and gets the “subscript out of range” error, that
administrator will have a hard time determining the cause of the message. A quick search at
http://support.microsoft.com returns dozens of support articles referencing “subscript out of
range,” but none of them tell you that VBScript requires command-line arguments. It
behooves you to make sure users of your Visual Basic scripts are not presented with such
unfriendly error messages. Let’s look at handling that now.

Creating a Useful Error Message

When you supply command-line arguments for your scripts, the VBScript run time (called the
Windows Scripting Host, or WSH for short) stores the arguments in an area of memory that
is referenced by the WshArguments collection. This is nice because this storage location allows
you to see how many command-line arguments are in there. Why is this important? It’s impor­
tant because when you know where the arguments are stored, and you know that they’re kept
in a collection, you can count the contents of that collection. For your script to run properly,
there must be at least one argument supplied on the command line. You can make sure there
is at least one argument by using the WScript.Arguments.Count method and putting it in an
If…Then construction. To make the script easy to read, we place this logic in a subroutine. We
call the subroutine first thing. If the value of the count is equal to zero, use WScript.Echo to
send a message to the user that at least one argument is required. Once you make these mod­
ifications, CheckArgsPingMultipleComputers.vbs looks like the following:

CheckArgsPingMultipleComputers.vbs
Option Explicit

On Error Resume Next

Dim strMachines

Dim aMachines, machine

Dim objPing, objStatus

subCheckArgs 'uses the count method for WshArguments

strMachines = WScript.Arguments.Item(0)

http://support.microsoft.com

85 Chapter 4 Working with Arrays
aMachines = Split(strMachines, ";")

For Each machine in aMachines

Set objPing = GetObject("winmgmts:{impersonationLevel=impersonate}")._

ExecQuery("select * from Win32_PingStatus where address = '"_

& machine & "'")

For Each objStatus in objPing

If IsNull(objStatus.StatusCode) or objStatus.StatusCode<>0 Then

WScript.Echo("machine " & machine & " is not reachable")

Else

WScript.Echo("reply from " & machine)

End If

Next

Next

Sub subCheckArgs

If WScript.Arguments.count = 0 Then

WScript.Echo "You must enter a computer to ping" & VbCrLf & _

"Try this: Cscript CheckArgsPingMultipleComputers.vbs " _

& "127.0.0.1;localhost"

WScript.Quit

End If

End sub

Quick Check

Q. What is a possible cause of the "subscript out of range" error message when running
scripts that are configured to use command-line arguments?

A. The error message could be caused by trying to run a Visual Basic script that requires
command-line arguments without supplying them.

Q. List one method of creating useful error messages to trap the “subscript out of range”
error.

A. You can use an If…Then…Else construct to test WScript.Arguments.Count for the presence
of a command-line argument. If none is present, you can then use the Else part to display
a meaningful error to the user. In addition, it is important to note that you cannot always
rely on the user putting in meaningful data. To solve this problem, you must check the
input data to ensure it meets the criteria for correct input.

Note There are two kinds of arguments: unnamed and named. With unnamed arguments
when you supply a value to the script, the argument is interpreted according to its position on
the command line. With named arguments, you supply a name for each argument. Each item
in the collection of arguments has a name and is retrieved from the collection by name.
Unnamed arguments are retrieved by index number.

Supply value for missing argument

1.	 Open CheckArgsPingMultipleComputers.vbs from \My Documents\Microsoft
Press\VBScriptSBS\ch04 in Microsoft Notepad or the script editor of your choice.

2.	 Save the file as YourNameSupplyMissingArgument.vbs.

86 Part I Covering the Basics
3.	 Declare a variable colArgs to hold a collection of unnamed arguments.

4.	 Set colArgs to hold a collection of unnamed arguments. This command will go right under
the Header section of the script. The line of code will look like the following:

Set colArgs = WScript.Arguments.UnNamed

5.	 In the subCheckArgs subroutine, modify If WScript.Arguments.count = 0 Then so that it
uses the colArgs variable instead. The modified line of code will look like the following:

If colArgs.count = 0 Then

6.	 Leave the remaining prompt the same.

7.	 Delete the WScript.Quit line of code. We are not going to exit the script if no argument is
supplied, rather we are going to supply a default value.

8.	 On a new line, under the WScript.Echo command, assign the loopback adapter and local
host to strMachines. The line will look like the following:

strMachines = "127.0.0.1;ocalhost"

9.	 If the value of colArgs.count is greater than 0, then we want to use item(0) to assign to

strMachines. This clause will look like the following:

Else

strMachines = colArgs(0)

10.	 Save and run the script. Supply a value at the command line; it should ping those
machines.

11.	 Run the script a second time. This time, do not supply a value for the command-line
argument. The script should echo help that illustrates usage and then ping both the
loopback and the localhost. If this is not the case, compare your script with CheckArgsP­
ingMultipleComputersSupplyValue.vbs in the Chapter 4 folder.

Note The Arguments collection is read-only. This is the reason for checking the number of
arguments in the collection and then assigning a value to the variable that would have held the
value if the argument had been present. This makes for more work in the script (as illustrated
in the “Supply Value for Missing Argument” procedure), but the increased usability of the script
is worth the effort. If the collection were not read-only, then we could have simply assigned the
desired value directly to the argument once we detected that it was missing.

Using Multiple Arguments
In PingMultipleComputers.vbs, you use only one argument, which you assigned to the vari­
able strMachines by using this command:

strMachines = WScript.Arguments.Item(0)

87 Chapter 4 Working with Arrays
When you look at the command, you see that it’s made up of several parts:

Variable = WScript.Arguments.Item Item #

strMachines = WScript.Arguments.Item (0)

If you need to use multiple arguments, you add another line and increment the item number
contained within the parentheses.

Just the Steps To implement multiple command-line arguments

1. On a new line, assign a variable to WScript.Arguments.Item(0).

2. On a new line, assign a variable to WScript.Arguments.Item(1).

3. Use the variable from step 1 as you would any variable.

4. Use the variable from step 2 as you would any variable.

Remember that the index values for the WScript.Arguments collection are zero-based, which
means that the first item counted will be zero, as used in the PingMultipleComputers.vbs
script. The following script (ArgComputerService.vbs) illustrates how you handle zero-based
index values. In ArgComputerService.vbs, you use two arguments. The first one is a computer
name, and the second argument is the name of a service. To run this script, change to the
directory containing your script at a command prompt and use the following command:

Cscript argComputerService.vbs localhost lanmanserver

By using this command, the status of the lanmanserver server service on the localhost is
returned to you. Lanmanserver is the name of the server service when it is registered in the
registry. If you have access to a different machine, then supply the name or Internet Protocol
(IP) address in place of localhost and use that name when running the following script, Arg-
ComputerService.vbs.

ArgComputerService.vbs
Option Explicit

On Error Resume Next

Dim computerName

Dim serviceName

Dim wmiRoot

Dim wmiQuery

Dim objWMIService

Dim colServices

Dim oservice

computerName = WScript.Arguments(0)

serviceName = WScript.Arguments(1)

wmiRoot = "winmgmts:\\" & computerName & "\root\cimv2"

Set objWMIService = GetObject(wmiRoot)

wmiQuery = "Select state from Win32_Service" &_

" where name = " & "'" & serviceName & "'"

88 Part I Covering the Basics
Set colServices = objWMIService.ExecQuery _

(wmiQuery)

For Each oservice In colServices

WScript.Echo (serviceName) & " Is: "&_

oservice.state & (" on: ") & computerName

Next

Header Information

The standard header information is in the ArgComputerService.vbs script. It begins with
Option Explicit, which tells VBScript that you’re going to specifically name all the variables
you’ll be using. If you fail to list a variable in this section, you get an error from VBScript. The
variables used in ArgComputerService.vbs are listed in Table 4-1.

Table 4-1 Variables used in ArgComputerService.vbs

Variable Name Use

computerName Holds the first command-line argument

serviceName Holds the second command-line argument

wmiRoot Holds the namespace of WMI

wmiQuery Holds the query issued to WMI

objWMIService Holds the connection into WMI

colServices Holds the result of the WMI query

oservice Holds each service in colServices as you walk through the collection

Reference Information

In the Reference information section, you assign specific values to variable names to make the
script work properly. By changing reference assignments, you can modify the script to per­
form other actions. The variable computerName is used to hold the first command-line argu­
ment. If the first item entered on the command line is not the name of a valid computer on the
network, the script fails. In this particular script, you haven’t taken steps to ensure the script
will end normally. The variable serviceName is used to hold the value of the second item from
the command line. In the same way that computerName must be the name of a valid computer
on the network, serviceName must be the name of a valid installed service on the target com­
puter. The service name is not the same as the display name that is used in the services appli­
cation, rather it is the name assigned within the registry when the service is created. The script
could be modified to provide a list of installed services on the target machine and then to
allow the user to pick one of those services.

Tip Select only information you intend to use from WMI. The wmiQuery variable used in
ArgComputerService.vbs only selects the state of the service. The name is automatically
selected and does not have to appear in the select statement here. If we had used Select *, then
we would have returned all 25 properties of the service…a real waste when we are only using
two of the properties in the Output section of the script.

89 Chapter 4 Working with Arrays
Worker and Output Information

Once again, the Worker and Output information section of the script is quite simple:

For Each oservice In colServices

WScript.Echo (serviceName) & " Is: " & _

oservice.State & (" on: ") & computerName

Next

Because WMI returns service information in a collection (even when the collection has only a
single value), you must use a For Each…Next loop to walk through each item in the collection
to obtain your information. A For Each…Next loop is the engine that drives your script. The
variable colServices contains every service that was returned by wmiQuery. The variable oservice
holds each individual service and is used as the “hook” for asking for certain information
through WMI. In this instance, you’re interested only in the status information, and so you
echo out the oservice.status information. If you modified the query contained in the wmiQuery
variable, you’d be able to echo any of the information that is held within the Win32_Service
part of WMI.

To find out more information about Win32_Service, search in the WMI Platform SDK in the
Resources directory of the CD, or on www.microsoft.com.

The only other interesting aspect of the Worker and Output information section of the script
is the use of concatenation, which was talked about in Chapter 3, “Adding Intelligence.”
Notice how the ampersand character (&) is used to glue two parts of the output line together.
The other use of the ampersand is in conjunction with the underscore character (_). The
underscore character signals to VBScript that the line is continued onto the next line. The
ampersand character is often used with the line continuation character because the under­
score breaks up the long line, and the ampersand is used to glue pieces together. Because a
line might be in parts anyway, the line continuation character is a convenient place for break­
ing the script. The continuation character is primarily used to make a script more readable
(both on screen and on paper).

Earlier in this section, you learned that ArgComputerService.vbs requires two command-line
arguments: The first must be the name of a target computer, and the second must be the name
of a valid service on the target computer. How would the user of the ArgComputerService.vbs
script know about this requirement? If the script failed, the user could open the script in Note-
pad to see which argument is required. A second solution might be to modify the script so that
when it failed, it would echo the correct usage to the user. There is, however, a third choice—
the use of named arguments—which is the subject of the next section.

Tell Me Your Name
One of the rules I learned as a network administrator and as a consultant was to keep things
simple. I’d therefore use short computer names and basic network designs as much as possi­

http:www.microsoft.com

90 Part I Covering the Basics
ble, because at some point, I’d be using ping.exe, tracert.exe, nslookup.exe, and so forth from
the command line. As you know, I hate to type, so “the shorter the better” is my motto. This
being the case, I am in somewhat of a quandary with this next section, because the method­
ology will require more typing on the command line.

Reasons for Named Arguments

Despite additional typing, there are valid reasons to use named arguments. One of the biggest
reasons is the way VBScript handles unnamed arguments. For instance, in the ArgComput­
erService.vbs script, you must use command-line syntax such as this:

Cscript argComputerService.vbs computer1 lanmanserver

Suppose you happen to forget in which order the commands get entered, and you type the
following:

Cscript argComputerService.vbs lanmanserver computer1

The script would fail unless you happen to have a server named lanmanserver on your net­
work and a service named computer1 is running on lanmanserver. Don’t laugh! I’ve seen
stranger happenings. (For example, static Domain Name System [DNS] entries can point to
the wrong machine. A ping would in fact work—it would just go to the wrong computer. Those
kind of errors are always fun.) Therefore, in keeping with my philosophy of trying to make
things simple, let’s explore how to create named arguments. You’ll thank me, your boss will
thank me, and even your mom will thank me (because stuff will run so well, and you’ll be able
to make it home for the holidays).

Named arguments can be used to make the order of command-line arguments irrelevant. This
can make correct usage of running the script easier, especially when three or more distinct
arguments are being used with a script that does not intuitively suggest a particular order.

Just the Steps To implement named arguments

1. On a new line, use the Set command to assign WScript.Arguments.Named to a variable.

2. On the next line, create a name for the argument and assign it to a variable.

3. On the next line, assign create a second name for the second argument and assign it to
a variable as well.

4. Use the variables defined in steps 2 and 3 as you would regular variables. Their values will
be assigned when you run the script.

Making the Change to Named Arguments

To modify the previous script to require named arguments instead of unnamed arguments,
you need to modify only four lines of code. The first change is to add an additional variable

91 Chapter 4 Working with Arrays
that will be used to hold the named arguments from the command line. The second modifica­
tion will take place in the Reference section, in which you will assign the new variable to the
named arguments collection. The last two changes will take place as you assign the variables
to hold the server name and the service names in the script. The revised script,
NamedArgCS.vbs follows:

NamedArgCS.vbs
Option Explicit

'On Error Resume Next

Dim computerName

Dim serviceName

Dim wmiRoot

Dim wmiQuery

Dim objWMIService

Dim colServices

Dim oservice

Dim colNamedArguments

Set colNamedArguments = WScript.Arguments.Named

computerName = colNamedArguments("computer")

serviceName = colNamedArguments("service")

wmiRoot = "winmgmts:\\" & computerName & "\root\cimv2"

wmiQuery = "Select state from Win32_Service" &_

" where name = " & "'" & serviceName & "'"

Set objWMIService = GetObject(wmiRoot)

Set colServices = objWMIService.ExecQuery _

(wmiQuery)

For Each oservice In colServices

WScript.Echo serviceName & " Is: " &_

oservice.state & " on: " & computerName

Next

The four lines that were changed in the preceding script are listed here:

Dim colNamedArguments

Set colNamedArguments = WScript.Arguments.Named

computerName = colNamedArguments("computer")

serviceName = colNamedArguments("service")

Because you added a variable for named arguments in the Reference section, you’ll need to
Dim that variable in the Header section. Declare colNamedArguments in the Header informa­
tion section of the script. In the next line, you make colNamedArguments equal to the named
arguments by using the Set command. You now assign each of the named arguments to vari­
ables of the same name: computerName and serviceName. This time, instead of simply referenc­
ing the WScript.Arguments element by index number, you are referencing the
WScript.Arguments element using their names. Instead of simply using a 0 or a 1 (like we do
when working with the unnamed arguments), you use the name from the command line.

92 Part I Covering the Basics
Running a Script with Named Arguments

To supply data to a script with named arguments, you type the name of the script at the com­
mand prompt and use a forward slash (/) with the name of the argument you are providing,
separated by a colon and the value you assign to the argument. The preceding script is named
NamedArgCS.vbs, and it takes two arguments: computer and service. The command to launch
this script is run against a computer named S2 and queries the lanmanserver service on that
machine:

Cscript namedargcs.vbs /computer:127.0.0.1 /service:lanmanserver

Quick Check

Q. What is one reason for using named arguments?

A. With named arguments, when you have multiple command-line arguments, you don’t
need to remember in which order to type the arguments.

Q. How do you run a script with named arguments?

A. To run a script with named arguments, you use a forward slash and then enter the name
of the argument. You follow this with a colon and the value you want to use.

Check and supply named arguments

1.	 Open NamedArgCS.vbs from \My Documents\Microsoft Press\VBScriptSBS\ch04 in
Notepad or your script editor of choice. Save it as YourNameCheckNamedArgCS.vbs.

2.	 After you create the named arguments collection and assign arguments for both service
and computer, call the subCheckArgs subroutine. To do this, place the name of the sub­
routine on a line by itself, as seen below:

subCheckArgs

3.	 At the bottom of your script, begin the subroutine section with the word Sub followed by
the name of the subroutine. This is seen below:

Sub subCheckArgs

4.	 Skip down a few lines and end the subroutine section with the words End Sub.

5.	 Now develop the logic that will check for the presence of two command-line
arguments and supply a default value if one of the arguments is missing. Use an If…Then
construction.

If colNamedArguments.Count < 2 Then

6.	 Nest another If…Then block to test for the presence of the computer argument. Use the
Exists method. If the argument does exist, this means that the service argument was
omitted. Assign the spooler service to the serviceName variable and let the user know
you are using the default service for the check. It will look like the following:

93 Chapter 4 Working with Arrays
If colNamedArguments.exists("computer") Then

serviceName = "spooler"

WScript.Echo "using default service: spooler"

7.	 If the service argument was supplied, and you are in this code block, then it means
they omitted the computer argument. Assign the value localhost to the computerName
variable and let the user know you are using the default computer. This code looks like
the following:

Else If colNamedArguments.Exists("Service") Then

computerName = "localHost"

WScript.Echo "using default computer: localhost"

8.	 If you are inside the If…Then statement, and it was not either the service or the computer
that was missing, then it means the user completely munged the input to the command-
line argument. Let’s print out a friendly help message and end the script. This will look
like the following:

Else

WScript.Echo "you must supply two arguments" _

& " to this script." & VbCrLf & "Try this: " _

& "Cscript checkNamedArgCS.vbs /computer:" _

& "localhost /service:spooler"

WScript.Quit

9.	 You will need three End If statements before End Sub.

10.	 Save and run the script. Test each condition: no arugments, one argument, two
arguments. The script should run fine. If it does not, then compare it with the Check-
NamedArgCS.vbs script in the Chapter 4 folder.

Working with Arrays
Because we have discussed collections, you might find it easy at this point to think of arrays as
collections that you create and can control—and you would be right. Arrays are like collections
you can create and control yourself. There are several nice aspects of arrays; for example, you
can populate them with information for later use in the script. In addition, you can create an
array dynamically during the execution of the script. You’ll explore each of these concepts in
this section.

Just the Steps To create an array

1. On a new line, use the Dim command to declare the name to use for the array.

2. Populate the array by assigning values to the name declared in the first line by using the
Array command and enclosing the values in parentheses.

94 Part I Covering the Basics
One way to create an array is to use the Dim command to declare a regular, or normal, vari­
able. You then use the variable to populate the array with computer names and use a For
Each…Next loop to walk through the array. Remember, an array is basically a collection, and
you therefore need to use a For Each…Next loop to walk through it. The following script creates
an array with the names of three computers. The variable i is used as a counter to track your
progress through the collection. Because an array is zero-based (that is, it begins counting at
zero), you set i to an initial value of zero. Next, you populate the array with your computer
names, making sure to enclose the names in quotation marks; and you use a comma to sepa­
rate the values. The collection of computer names is placed inside the parentheses. You use a
For Each…Next loop to walk through and echo the computer names to the screen. You then
increment the counter i to the next number and go back into the For Each…Next loop. Because
For Each…Next already knows how to retrieve an item from a collection, we do not need to
point to a specific element in the array. Using For Each…Next in this manner is a great way to
walk through an array when you do not know how many items are in the array. This script,
BasicArrayForEachNext.vbs, follows.

BasicArrayForEachNext.vbs
Option Explicit

On Error Resume Next

Dim myTab 'Holds custom tab of two places

Dim aryComputer 'Holds array of computer names

Dim computer 'Individual computer from the array

Dim I 'Simple counter variable. Used to retrieve by

'Element number in the array.

myTab = Space(2)

i = 0 'The first element in an array is 0.

aryComputer = array("s1","s2","s3")

WScript.Echo "Retrieve via for each next"

For Each computer In aryComputer

WScript.Echo myTab & "computer # " & i & _

" is " & computer

i = i+1

Next

Another approach to dealing with elements in an array is to use the For…Next statement. As
you may recall from Chapter 2, For…Next enables you to walk through a collection if you know
how many times you want to do something. Because you may not always know how many
items you have in the array, it is helpful to use the function UBound. UBound acts just like the
Count method we used with the command-line arguments. It tells us how many items are in
the array. Armed with this information, we can use For…Next. This is seen in the
BasicArrayForNext.vbs script below.

BasicArrayForNext.vbs
Option Explicit

On Error Resume Next

Dim myTab 'Holds custom tab of two places

Dim aryComputer 'Holds array of computer names

Dim computer 'Individual computer from the array

95 Chapter 4 Working with Arrays
Dim i 'Simple counter variable. Used to retrieve by

'Element number in the array.

myTab = Space(2)

i = 0 'The first element in an array is 0.

aryComputer = array("s1","s2","s3")

WScript.Echo "Retrieve via for next"

i = 0

For i = 0 To UBound(aryComputer)

WScript.Echo myTab & "computer # " & i & _

" is " & aryComputer(i)

Next

Moving Past Dull Arrays
I will admit the previous two scripts were pretty dull. But because the construction of an
array is very finicky, I wanted you to have a reference for the basic array (you will need it for
your labs).

In the next script (ArrayReadTxtFile.vbs), you open up a text file, parse it line by line, and
write the results into an array. You can use this line-parsing tactic later as a way to feed infor­
mation into a more useful script. Right now, all you’re doing with the array after it is built is
echoing its contents out to the screen.

ArrayReadTxtFile.vbs
Option Explicit

'On Error Resume Next

Dim objFSO

Dim objTextFile

Dim arrServiceList

Dim strNextLine

Dim i

Dim TxtFile

TxtFile = "ServersAndServices.txt"

Const ForReading = 1

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

Do Until objTextFile.AtEndOfStream

strNextLine = objTextFile.Readline

arrServiceList = Split(strNextLine , ",")

WScript.Echo "Server name: " & arrServiceList(0)

For i = 1 to UBound(arrServiceList)

WScript.Echo vbTab & "Service: " & arrServiceList(i)

Next

Loop

WScript.Echo("all done")

96 Part I Covering the Basics
Header Information

The Header information section of your script incorporates the standard bill of fare. You use
Option Explicit to ensure all variables are specifically declared, which prevents the misspelling
of variable names during the development phase of the script. On Error Resume Next is a rudi­
mentary error suppression command that tells VBScript to skip a line containing an error and
proceed to the next line in the script. This is best turned off during development. After using
On Error Resume Next, you declare six variables. The first variable, objFSO, is used to hook the
file system object (which allows you to access files and folders from the script). The next vari­
able, objTextFile, is used as the connection to the text file itself. The variable arrServiceList is
used to refer to the array of services and servers that you build from the text file. The variable
strNextLine holds the text of the next line in the text file. The i variable is simply a counter that
gets incremented on each loop through the text file. The last variable is TxtFile. It holds the
location inside the file system that points to the specific text file with which you will work.

Option Explicit

'On Error Resume Next

Dim objFSO

Dim objTextFile

Dim arrServiceList

Dim strNextLine

Dim i

Dim TxtFile

Reference Information

The Reference information section of the script is used to point certain variables to their
required values. These will be a listing of servers in column 0 and service names in the remain­
ing columns. The text file used as input into the array is defined with the variable TxtFile. By
using a variable for input into ArrayReadTxtFile.vbs, you make changing the location of the
file easy. The ServersAndServices text file needs only to be defined in this location, and the
variable TxtFile is left untouched—wherever it might be used within the script. The constant
ForReading is set to 1, which tells VBScript that you are going to read a text file (as opposed to
write to the file).

TxtFile = "ServersAndServices.txt"

const ForReading = 1

Worker and Output Information

In the Worker and Output information section of ArrayReadTxtFile.vbs, you’re finally going
to settle down and do something worthwhile. You must first connect to FileSystemObject to be
able to read the text file. You do this by using the variable objFSO. You set objFSO to be equal
to the object Scripting.FileSystemObject. Once you have created the file system object, you
define the variable objTextFile to be the result of opening TxtFile so that you can read it.
ObjTextFile will contain textStreamObject at this point.

97 Chapter 4 Working with Arrays
To work with the array, you need to implement some type of looping construction. This is
where Do Until...Next excels. You defined objTextFile to hold the text stream object that came
back from opening the ServersAndServices text file so that you could read the file. Because
you can look inside and read the file by using objTextFile, you now say that you’ll continue to
read the file until you reach the end of the stream of text. This is a most excellent use of Do
Until…Next. What is the script going to do until it reaches the end of the text file? It’s going to
read each line and assign that line of text to the variable strNextLine. After it’s made that
assignment, it will look for commas and then split the text up into pieces that are separated by
those commas. Each piece of text will then be assigned to your array. You’re still using a single
dimension array. (A single dimension array is an array that is like a single column from a
Microsoft Excel spreadsheet.) Interestingly enough, you’re actually creating a new array every
time you use the Split function.. The nice part is that you can include as many services as you
need to use by adding a comma and the service on the same line. Once you go to another line
in the text file, you have a new array.

The array portion of ArrayReadTxtFile.vbs is not really created until you get to the Worker and
Output information section of the script. In the Header information section, when you
declared the variable arrServiceList, you really didn’t know whether it was a regular variable or
something else. This is why it was given the prefix arr—it sort of looks like array (and requires
less typing). You could have just as easily called it arrayServiceList, but doing so would have
made your script longer. When you use the suffixes (0) and (i) in the WScript.Echo statement,
VBScript knows you want to refer to elements in the array. The Worker and Output informa­
tion section of the script follows:

Do Until objTextFile.AtEndofStream

strNextLine = objTextFile.Readline

arrServiceList = Split(strNextLine , ",")

WScript.Echo "Server name: " & arrServiceList(0)

For i = 1 To UBound(arrServiceList)

WScript.Echo "Service: " & arrServiceList(i)

Next

Loop

What Does UBound Mean?

Did you notice that I didn’t explain the For…Next construction embedded in the Do Until
loop? The goal was to make ArrayReadTxtFile.vbs as flexible as possible, and therefore I
didn’t want to limit the number of services that could be input from the text file. To make sure
you echo through all the services that could be listed in the ServersAndServices text file, you
need to use the For…Next loop to walk through the array. You can find out how many times
you need to do For…Next by using UBound. Think of UBound as standing for the upper bound­
ary of the array. As you might suspect, because there is an upper boundary, there is also a
lower boundary in the array, but because the lower boundary is always zero, LBound isn’t
needed in this particular script.

98 Part I Covering the Basics
When you run ArrayReadTxtFile.vbs, the i counter in For i = 1 To UBound(arrServiceList)
changes with each pass through the list of services. To track this progress, and to illustrate
how UBound works, I’ve modified the ArrayReadTxtFile.vbs script to echo out the value of
UBound each time you read a new line from the ServersAndServices text file. The modified
script is called ArrayReadTxtFileUBound.vbs and is located in the Chapter 4 folder. Its
Worker section follows:

Do Until objTextFile.AtEndofStream

boundary = UBound(arrServiceList)

WScript.Echo "upper boundary = " & boundary

strNextLine = objTextFile.Readline

arrServiceList = Split(strNextLine , ",")

WScript.Echo "Server name: " & arrServiceList(0)

For i = 1 To UBound(arrServiceList)

WScript.Echo "Service: " & arrServiceList(i)

Next

Loop

To track changes in the size of the upper boundary of the array by looking at the value of
UBound, it was necessary to assign the value of our new variable boundary after the Do Until
command but prior to entry into the For…Next construction. At this location in the script, the
new line of text has been read from the ServersAndServices text file, and the script will con­
tinue to track changes until it reaches the end of the file.

Quick Check

Q. How did we declare an array in the previous example?

A. We declared a regular variable, using the Dim command.

Q. How can the population of an array be automated?

A. You can automate the population of an array by using the For…Next command.

Q. If you do not know in advance how many elements are going to be in the array, how
can you automate the population of an array?

A. You can automate the population of an array with an unknown number of elements by
using the For…Next command in conjunction with UBound.

Combine text file array and WMI

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch04\ArrayReadTxtFile.vbs
script in Notepad or your preferred script editor. Save the script as YourNameAr­
rayReadTxtFileCheckServices.vbs.

2.	 In the Reference section of the script, change the value of TxtFile to point to "RealServers
AndServices.txt". It will look like the following:

TxtFile = "RealServersAndServices.txt"

3.	 Declare a new variable, boundary, in the Header section of the script.

99 Chapter 4 Working with Arrays
4.	 In the Worker section, arrServiceList is an array that is created by using the Split function
on strNextLine. Assign boundary to be equal to UBound(arrServiceList). This goes on the
line following the Split function, and it looks like the following:

boundary = UBound(arrServiceList)

5.	 Following the assignment of boundary, assign strComputer to be equal to element 0 of
the arrServiceList.

strComputer = arrServiceList(0)

6.	 Modify the WScript.Echo line so that it informs users the output is a listing of service sta­
tus messages on the computer. My Echo command looks like the following:

WScript.Echo "Status of services on " & strComputer

7.	 Define a new subroutine called subCheckWMI. Do this at the bottom of your script.
Begin the construction with the word Sub followed by the name of the subroutine, as
seen below:

Sub subCheckWMI

8. Skip a few lines and end the subroutine with the End Sub command, as seen below:

End Sub

9.	 Open the CheckServiceStatus.vbs script from the Chapter 4 folder and copy everything
but the variable declarations between the Sub subCheckWMI and End sub lines. It will
look like the following when you are done:

Sub subCheckWMI

strComputer = "."

serviceName = "spooler"

wmiRoot = "winmgmts:\\" & strComputer & "\root\cimv2"

wmiQuery = "win32_service.name=" & funFIX(serviceName)

Set objWMIService = GetObject(wmiRoot)

Set objItem = objWMIService.get(wmiQuery)

WScript.Echo vbTab & (serviceName) & " Is: " _

& objItem.state & " startup mode is: " & objItem.StartMode

End sub

10.	 Clean up the subroutine. Delete the strComputer = "." line because the value of strCom­
puter is assigned via the text file.

11.	 Delete the serviceName = "spooler" line because it will be assigned via the text file as well.

12.	 Move the Set objWMIService = GetObject(wmiRoot) line under the wmiRoot line and above
the wmiQuery line.

100 Part I Covering the Basics
13.	 The subroutine now looks like the following:

Sub subCheckWMI

wmiRoot = "winmgmts:\\" & strComputer & "\root\cimv2"

Set objWMIService = GetObject(wmiRoot)

wmiQuery = "win32_service.name=" & funFIX(serviceName)

Set objItem = objWMIService.get(wmiQuery)

WScript.Echo vbTab & (serviceName) & " Is: " _

& objItem.state & " startup mode is: " & objItem.StartMode

End sub

14.	 Use For…Next to walk through the array that contains the service names to inspect.
Place it on the next line after Set objWMIService = GetObject(wmiRoot) The line of code
will look like the following

For i = 1 to boundary

15.	 On the last line before the End sub line, add the Next statement to close out the For…Next
loop.

16.	 As we walk through the array, we want to pick up the names of the services. Under the
For i = 1 to boundary line, assign the element from the array to the variable serviceName,
as seen below:

serviceName = arrServiceList(i)

17.	 Now that the subroutine is complete, go back to the main script and add the line to
call the subroutine. It goes on the line after we print out the status of services on
strComputer, as seen below:

WScript.echo "Status of services on " & strComputer

SubcheckWMI

18.	 On the line after the one that calls the subroutine, add a command to print out a blank
line. I used the following code:

WScript.Echo vbNewLine

19.	 Go back to the CheckServiceStatus.vbs script. Copy the function from the bottom of
that script and paste it into the bottom of your script. The function looks like the follow­
ing:

Function funFIX(strIN)

funFIX = "'" & strIN & "'"

End Function

20.	 Save and run the script. It should work without error. If there is a problem, compare
your script with the \My Documents\Microsoft Press\VBScriptSBS\ch04\ArrayRead-
TextFileCheckServices.vbs script.

Chapter 4 Working with Arrays 101
Two-Dimensional Arrays
A two-dimensional array gives you the ability to store related information in much the same
way you would store it in an Excel spreadsheet. To visualize a two-dimensional array, it is help­
ful to think of a spreadsheet that contains both rows and columns.

Just the Steps To create a two-dimensional array

1. On a new line, use the Dim command to declare the name to use for the array, followed
by parentheses and the number of elements to be used for each dimension, separated
by a comma.

2. Populate the array by assigning values to the name declared in line 1 by using the array
name and assigning a value with each element.

To create a two-dimensional array, include both dimensions when you declare the variable
used for the array, as illustrated here:

Dim a (3,3)

All you’ve really done is include the extra dimension inside the parentheses. The array just
listed contains two dimensions, each holding four elements for a total of 16 elements. Each
dimension of the array is separated by a comma within the parentheses. Remember that the
array begins numbering with a zero, and thus Dim a (3,3) states that the array a has four rows
numbered from zero to 3, and four columns numbered from zero to 3.

The key points to remember about an array are that it resides in memory and can be used to
hold information that will be used by the script. With a two-dimensional array, you have a
matrix (not The Matrix—but a matrix nonetheless). Dim a (3,3) would look like the matrix in
Table 4-2.

Table 4-2 Two-dimensional array

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Each square in the array in Table 4-2 can hold a single piece of information. However, by using
concatenation (putting strings together by using the ampersand) or by manipulating the
string in other ways, you can get quite creative with the array.

Mechanics of Two-Dimensional Arrays

In the next script (WorkWith2DArray.vbs), a two-dimensional array is created. The script
then populates each of the 16 elements with the string “Loop” concatenated with the loop

102 Part I Covering the Basics
number. In this way, you can keep track of where you are within the matrix as you echo out
the value contained within the elements.

WorkWith2DArray.vbs
Option Explicit

Dim i

Dim j

Dim numLoop

Dim a (3,3)

numLoop = 0

For i = 0 To 3

For j = 0 To 3

numLoop = numLoop+1

WScript.Echo "i = " & i & " j = " & j

a(i, j) = "loop " & numLoop

WScript.Echo "Value stored In a(i,j) is: " & a(i,j)

Next

Next

Let’s look at the script in a little more detail.

Header Information

The Header information section of the script follows the normal procedure of beginning with
Option Explicit (which forces the declaration of each variable used in the script by using the
Dim command). Next, two variables (i and j) are declared that will each be used to count from
0 to 3 within a For…Next construction. The variable numLoop is used to keep track of the 16
passes that are required to work through all 16 elements contained in the array. The last item
in the Header information section of the WorkWith2DArray.vbs script specifically declares
our two-dimensional array: Dim a (3,3).

Reference Information

The Reference information section of our script consists of one line: numLoop = 0. Because you
use numLoop to keep track of how many loops are made through the array, it is important to
set it to zero. Later, you’ll reassign the value of numLoop to be equal to its current value in the
loop plus 1. By incrementing the numLoop counter, you can easily know exactly where you are
within the array.

Worker and Output Information

The Worker and Output information section of the script (shown in the next code listing)
begins immediately with a pair of nested For…Next constructions. The reason for nesting the
For…Next loop in this section of the script is to have a separate value for both the variable i and
the variable j.

Chapter 4 Working with Arrays 103
Using the For…Next Construction

Because the array was declared as Dim a (3,3) and you happen to know that the array is zero-
based, you use i = 0 to 3 in the For…Next loop, as shown in the first line of the following script.
You next increment the numLoop counter and echo the current values contained in the vari­
ables i and j. Once you know your location in the array, you assign the word loop concatenated
with the current value held in the numLoop counter to the particular array element that is cur­
rently described by a(i,j). If, for instance, the script is in its first loop, the value of i is 0 and the
value of j is 0, and when you get down to the WScript.Echo commands, the value of numLoop
has already been incremented. So, you would echo "i = 0 j = 0". Look closely at the following
script portion to make sure you understand what is happening in the first four lines:

For i = 0 To 3

For j = 0 To 3

numLoop = numLoop+1

WScript.Echo "i = " & i & " j = " & j

a(i, j) = "loop " & numLoop

WScript.Echo "Value stored In a(i,j) is: " & a(i,j)

Next

Next

Assigning Values to Each Element

Once the loop counter (numLoop) is incremented, it’s time to assign a value to each element
within the array. Rather than typing a whole series of a(0,0) = "loop" & numLoop lines, you
instead dynamically build the value of a(i,j) by using the two For…Next loops. Thus, prior to
assigning the value "loop" and numLoop to the array element, the element is empty.

Tip To assign a value to an element within an array, you specify the element number, fol­
lowed by the equal sign, and then specify the value. If, however, you use a For…Next loop, you
can in many instances automate the process.

After you assign values to the array, you use one final WScript.Echo command to echo out the
values that are contained within the array. This is where you’d do the actual work if this were
a real script. You close out the script with a pair of Next commands: one for each For intro­
duced earlier in the script.

Passing Arguments Step-by-Step Exercises
In this section, you’ll work with passing arguments by modifying a script that uses WMI to list
all the services associated with a particular process on the machine. This is in fact a very useful
script. While we are at it, we will simplify the script a little to make it easier to read.

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch04\StepByStep\Services
ProcessStarter.vbs script and save it as YourNameServicesProcess.vbs.

104 Part I Covering the Basics
2.	 Add the Option Explicit command at the top of the script.

3.	 Declare each variable used in the script. This would include the following:

Dim objIdDictionary

Dim strComputer

Dim objWMIService

Dim colServices

Dim objService

Dim colProcessIDs

Dim i

4.	 Save the script and run it to ensure you have all the variables defined. If you missed a
variable, Option Explicit will cause the “variable is undefined” error and list the line num­
ber containing the undefined variable.

5.	 Add a declaration for wmiRoot by adding Dim wmiRoot under the line that says
Dim colProcessIDs.

6.	 Under the line that says strComputer = ".", add the following:

wmiRoot = "winmgmts:\\" & strComputer & "\root\cimv2"

7.	 The preceding line allows you to shorten the following line to read:

Set objWMIService = GetObject("winmgmts:" _

& "\\" & strComputer & "\root\cimv2")

8.	 Edit the Set objWMIService = GetObject line by deleting everything after the GetObject
command. Inside the open parenthesis, type wmiRoot and add a close parenthesis. The
line should now look like the following:

Set objWMIService = GetObject(wmiRoot)

What you have done is created shorthand for the long winmgmts string. In addition, you
deleted some commands you didn’t need (which we’ll discuss in detail when we talk
about WMI in Chapter 8, “Using WMI”). The script is now much easier to read.

9.	 Run the script—it should work fine to this point. If it does not, compare it with \My Doc­
uments\Microsoft Press\VBScriptSBS\ch04\StepByStep\ServicesProcessPT1.vbs and
see where your code needs tweaking. Your script must run correctly at this point to com­
plete the lab.

10. If everything is working, examine closely the following line:

Set colServices = objWMIService.ExecQuery _

("Select * from Win32_Service Where State <> 'Stopped'")

You’ll make this line easier to read by placing the "Select * from Win32_Service Where State
<> "Stopped" line into a variable, which we unceremoniously call wmiQuery. To do this,
you must adjust the code in two ways. First, you must declare the variable wmiQuery by
typing the following after the wmiRoot declaration in the header section of the script:

Dim wmiQuery

Chapter 4 Working with Arrays 105
Your second adjustment is much trickier and therefore much more critical. You must
define wmiQuery to be equal to the Select statement. You place this code under the fol­
lowing line:

Set objWMIService = GetObject(wmiRoot)

To define wmiQuery, copy the Select statement from the Set colServices line, making sure
to include the quotation marks with your copy. The wmiQuery line now looks like the
following:

wmiQuery = "Select * from Win32_Service Where State <> 'Stopped'"

After you add the wmiQuery line above the Set colServices line, you delete the Select state­
ment from the Set colServices line. In place of the Select statement, you use the variable
wmiQuery. The modified line looks like this:

Set colServices = objWMIService.ExecQuery _

(wmiQuery)

11.	 Save the file and run the script. It should still work properly. If it does not, compare it
with the \My Documents\Microsoft Press\VBScriptSBS\ch04\StepByStep\
ServicesProcessPT2.vbs file to see where changes need to be made.

12.	 Now you will perform the same kind of adjustments to the second half of the script.
Look at the following code (which starts around line 44):

For i = 0 To objIdDictionary.Count – 1

Set colServices = objWMIService.ExecQuery _

("Select * from Win32_Service Where ProcessID = '" & _

colProcessIDs(i) & "'")

You want to put the Select statement into a wmiQuery variable. Recall from our discus­
sion in Chapter 1 that you can reuse variables whenever you want to. To illustrate this
point, you will reuse the variable name wmiQuery. You define wmiQuery to be equal to
the Select statement. To do this, you must define it prior to the line where you’ll need to
use it. This will be below the For i = 0 line and above the Set colServices line. After you do
this, you replace the Select statement with the variable wmiQuery. The modified code
looks like the following:

For i = 0 To objIdDictionary.Count – 1

wmiQuery = "Select * from Win32_Service Where ProcessID = '" & _

colProcessIDs(i) & "'"

Set colServices = objWMIService.ExecQuery _

(wmiQuery)

13.	 Run your script. If it does not run, compare it with \My Documents\Microsoft
Press\VBScriptSBS\ch04\StepByStep\ServicesProcessPT3.vbs.

14.	 One aspect of your script that you might find annoying is that it doesn’t indicate when
it is finished running. Let’s fix this by adding a WScript.Echo command to let us know
the script is done. At the bottom of the script, you just do something like the following:

WScript.Echo "all done"

106 Part I Covering the Basics
15.	 To modify the script to accept a command-line argument, simply edit strComputer = "." so
that the variable strComputer is assigned to be whatever comes in from the command
line, not ".", which means this local computer. The revised line looks like the following:

strComputer = WScript.Arguments(0)

By doing this, you now will run the script against any computer whose name is placed
on the command line at the time you run the script.

16.	 Save your script. You can compare it with \My Documents\Microsoft
Press\VBScriptSBS\Ch04\StepByStep\ServicesProcessPT4.vbs. To run the script, open
a command prompt and go to the directory where you have been saving your work. You
will want to run the script under CScript, and you will need to include the name of a
reachable computer on your network. The command line for mine looks like this:

\My Documents\Microsoft Press\VBScriptSBS\ch04\StepByStep>Cscript ServicesProcessPT4.vbs

localhost

17.	 What happens when you try to include two server names? What happens when you try
to run the script without a command-line argument? Let’s now modify the script so that
it will provide a little bit of help when it is run. As it stands now, when the script is run
without a command-line argument, you simply get a “subscript out of range” error. In
addition, when you try to include several computer names from the command line, the
first one is used and the others are ignored.

18.	 To add some help, check to ensure that the person running the script added a com­
mand-line argument when they executed the script. To do this, check WScript.Argu­
ments.UnNamed.Count and make sure it is not zero. Use an If…Then construction to
perform this check. Put this code in a subroutine called subCheckArgs. The subroutine
will go at the bottom of the script, but you will call the subroutine just after the Header
section. The code for the subroutine looks like the following:

Sub subCheckARGS

If WScript.Arguments.count = 0 Then

WScript.Echo("You must enter a computer name")

WScript.quit

End If

End Sub

19.	 Because you’re using an If...Then construction, you must end the If statement. The script
to this point is saved as \My Documents\Microsoft Press\VBScriptSBS\ch04\Step-
ByStep\ServicesProcessPT5.vbs and you can use it to check your work.

20.	 Now use the Split function so that you can enter more than one computer name from
the command line. Doing this will be a little tricky. First you must declare two new vari­
ables, listed here:

Dim colComputers

Dim strComputers

Chapter 4 Working with Arrays 107
Because strComputer is used to hold the command-line arguments, and you want to be
able to run the script against multiple computers, you’ll need to be able to hold a collec­
tion of names. colComputers is used to hold the collection of computer names you get
after you parse the command-line input and “split” out the computer names that are sep­
arated by commas. Because you now have a collection, you have to be able to iterate
through the collection. Each iterated item will be stored in the variable computer.

21.	 Under the strComputer = WScript.Arguments (0) line, add the colComputers line in which
you use the Split command to parse the command-line input. Then use a For Each line to
iterate through the collection. The two new lines of code are listed here:

strComputer = WScript.Arguments(0)

colComputers = Split(strComputer, ",")

For Each computer In colComputers

22.	 Because you’re modifying the input into the script, you need to change your wmiRoot
statement so that it points to the parsed line that comes from the Split command. To do
this, you use the following line of code just after the For Each command in the colCom­
puters line:

wmiRoot = "winmgmts:\\" & Computer & "\root\cimv2"

23.	 Add an additional Next statement near the end of the script. Because you are doing a For
Each…Next construction, you need to add another Next command. The bottom section
of the script now looks like the following:

For Each objService In colServices

WScript.Echo VbTab & objService.DisplayName

Next

Next

Next

WScript.Echo "all done"

The script starts to get confusing when you wind up with a stack of Next commands.
You might also notice that in the \My Documents\Microsoft Press\VBScriptSBS\
ch04\StepByStep\ServicesProcessPT6.vbs script, I indented several of the lines to make
the script easier to read. If you’re careful, you can use the Tab key to line up each For
Each command with its corresponding Next command.

24.	 Save your script and try to run it by separating several computer names with a comma
on the command line. Compare your script with mine, which is saved as
ServicesProcessPT6.vbs.

One Step Further: Building Arrays
In this section, you explore building arrays. To help in the process, you’ll take a few ideas from
the script in the “Passing Arguments” section and use them in a starter file.

108 Part I Covering the Basics
1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch04\OneStepFur­
ther\OneStepFurtherStarter.vbs file and save it as YourNameOneStepFurther.vbs. Note
that OneStepFurtherStarter.vbs will not run. It is provided to save you some typing so
that you can spend more time working with arrays.

2.	 You first need to declare your arrays. The first array you need to declare is array1. It is ini­
tialized without a specific number of elements, and so you use the format Dim array1().

3.	 Declare the second array, array2. Because array2 is created automatically when you use
the Filter command, you just simply use the format Dim array2.

4.	 Initialize the variables a and i, which are used for counting the elements in the array. In
fact, in this script you’ll be creating two arrays. The code goes under the series of Dim
statements, which are used to declare the variables used in this script.

a = 0

i = 0

5.	 Now you come to the first of the For Each statements in this script. This will come on the
line after you use set colServices to make the connection into WMI.

For Each objService In colServices

ReDim Preserve array1(i)

array1(i) = objService.ProcessID

i = i + 1

Next

Here you are creating a For Each…Next loop that you’ll use to add elements into the first
array, which is called array1. Recall our discussion about arrays: Because you wanted to
add information to the array and keep the existing data, and because you didn’t know
how many elements you’d have in the array, you used the format array1() when you
declared it. Now you want to keep the information you put into the array, so you must
use the ReDim Preserve command. Then you add items to each element of the array by
using the following command:

array1(i) = objService.ProcessID

Once you add the process ID into the array, you increment the counter and go to the
beginning of the For Each loop.

6.	 Save the script. Compare your script with the \My Documents\Microsoft
Press\VBScriptSBS\ch04\OneStepFurther\OneStepFurtherPT1.vbs file. If you try to
run your script, you will still get an error.

7.	 Now you populate array2, once again using a For Each…Next loop. The significant item
in the code in this step is the Filter command. If you didn’t create a second array, when
you ran the script, you’d get pages of junk because the looping would create duplicate
process IDs. (Remember, you’re performing a query for process IDs that are associated
with services, so that behavior is to be expected.)

Chapter 4 Working with Arrays 109
Because there is no unique command or method for arrays, you have to create a second
array—named array2—by using the Filter command, and you also have to use a compari­
son filter as you add elements into it. The input into the filter is array1. You are matching
the ProcessIDs from objService. (This is actually rather sloppy coding. Because you used
objService.ProcessID several times, you could have created an alias for it.) The false in the
last position of the command tells VBScript that the item is brought into the array only
if a match is not found, which gets rid of our duplicate problem. You might want to
change this value to true and see what happens to your script!

For Each objService In colServices

array2 = Filter(array1,objService.processID, false)

a = a + 1

Next

8.	 Save the script. At this point, the script should run. If yours does not run, then compare
it with \My Documents\Microsoft Press\VBScriptSBS\ch04\OneStepFur­
ther\OneStepFurtherPT2.vbs.

9.	 You need to put a For…Next loop around the bottom WMI query. Because you’re work­
ing with an array, determine the upper element in the array by using the UBound com­
mand, as shown in the following code:

For b = 0 To UBound(array2)

This line will be used by the second array. What you are doing now is running a second
WMI query against only the unique elements that reside in the second array. Make sure
you add the last Next command. You just added two statements around six statements
already in the file. The completed section of script, called \My Documents\Microsoft
Press\VBScriptSBS\ch04\OneStepFurther\OneStepFurtherPT3.vbs, looks like the
following:

For b = 0 To UBound(array2)

wmiQuery = "Select * from Win32_Service Where ProcessID = '" & _

array2(b) & "'"

Set colServices = objWMIService.ExecQuery _

(wmiQuery)

WScript.Echo "Process ID: " & array2(b)

For Each objService In colServices

WScript.Echo VbTab & objService.DisplayName

Next

Next

10.	 Run the script. The script should now run as intended. If it doesn’t, compare your script
with OneStepFurtherPT3.vbs.

11.	 Now let’s make some further changes to the script, to add functionality. Save your script
from step 10 to a new name such as YourNameOneStepFurtherPartOne.vbs.

12.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch04\OneStepFurther\
OneStepFurtherPartTWOstarter.vbs script and save it as YourNameOneStepFurther
PartTwo.vbs.

110 Part I Covering the Basics
13.	 Because you’re going to feed a text file, you won’t need the code that references the Argu­
ments collection. You will, therefore, also have to remove the following lines of code:

If WScript.Arguments.count = 0 Then

WScript.Echo("You must enter a computer name")

Else

strComputer = WScript.Arguments(0)

colComputers = Split(strComputer, ",")

Make sure you leave the line that is used to create the dictionary object. In addition, do
not forget to get rid of the End If line at the bottom of the script. See \My Docu­
ments\Microsoft Press\VBScriptSBS\ch04\OneStepFurther\OneStepFurtherPT4.vbs
to make sure you removed the correct lines of code.

14.	 Add code to accept a command-line text file. You’ll need to create a variable named Txt-
File for the text file and then point the variable to a valid text file on your computer.
Inside the text file, you need a list of only those computer names reachable on your net­
work, separated by a comma. (Refer to my Servers.txt file for a sample, or simply edit it
to your needs.)

Next you create a constant called ForReading and set it equal to 1. This is a good way to
simplify accessing the file. Now create the FileSystem object by using the CreateOb­
ject("Scripting.FileSystemObject") command, which you set equal to the objFSO variable.

After you do that, open the text file by setting the objTextFile variable to be equal to
objFSO.OpenTextFile—we feed this the variable for our text file and also the constant For-
Reading. Code for accomplishing all this follows. You place this code right below the
Dim commands. This code is saved as \My Documents\Microsoft
Press\VBScriptSBS\ch04\OneStepFurther\OneStepFurtherPT5.vbs.

TxtFile = "Servers.txt"

Const ForReading = 1

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

15.	 Look over the text file so that you know where to look for services and processes. To do
this, use a Do Until loop. The interesting thing about this section of the code is that the
loop is rather large, because you want to work with one computer at a time and query its
services and processes prior to making another round of the loop. Therefore, placement
of the outside Loop command is vital. In addition, you need to change the variable used
in the For Each computer line, which follows the outside loop. Change colComputers to
be arrServerList. Also, add a variable for strNextLine and arrServerList to the Header infor­
mation section of your script.

Do Until objTextFile.AtEndofStream

strNextLine = objTextFile.Readline

arrServerList = Split(strNextLine , ",")

Chapter 4 Working with Arrays 111
16.	 Save your file. You can compare your file with \My Documents\Microsoft
Press\VBScriptSBS\ch04\OneStepFurther\OneStepFurtherPT6.vbs. This script now
runs.

17.	 To keep track of how the script runs, add the following line just above the wmiRoot =

"WinMgmts:\\ line:

WScript.Echo" Processes and services on " & (computer)

18.	 To control the creation of the dictionary, move the line Set objIdDictionary = CreateOb­
ject("Scripting.Dictionary") inside the For Each computer In arrServerList line. Save your
file and compare it with \My Documents\Microsoft Press\VBScriptSBS\ch04\OneStep-
Further\OneStepFurtherPT7.vbs, if you want to.

19.	 Add a new variable called j.

20.	 Change i to j in the following line: For i = 0 To objIdDictionary.Count – 1. This gives us a
new counter the second time the script is run. In addition, edit the other two places
where colProcesses(i) appears in this section and change colProcesses(i) to j as well.

21.	 To make sure you don’t reuse dictionary items the second time the script runs, remove
all items from the dictionary by employing the objIdDictionary.RemoveAll command. You
need to do this outside the For j loop but inside the For Each computer loop. The com­
pleted section looks like the following:

For j = 0 To objIdDictionary.Count – 1

wmiQuery = "Select * from Win32_Service Where ProcessID = '" & _

colProcessIDs(j) & "'"

Set colServices = objWMIService.ExecQuery _

(wmiQuery)

WScript.Echo "Process ID: " & colProcessIDs(j)

For Each objService In colServices

WScript.Echo VbTab & objService.DisplayName

Next

objIdDictionary.RemoveAll

Next

Next

Loop

WScript.Echo "all done"

This completes the “One Step Further” exercise. Compare your work to the \My Docu­
ments\Microsoft Press\VBScriptSBS\ch04\OneStepFurther\OneStepFurtherPT8.vbs script.

112 Part I Covering the Basics
Chapter 4 Quick Reference

To Do This

Include a command-line argument without
using switches

Use unnamed arguments

Use command-line arguments to supply more
than one argument

Use named arguments

Ensure that the arguments are not position
sensitive

Use named arguments

Avoid typing multiple arguments at the
command line

Use a text file for input

Provide convenient storage inside memory to
control execution of the script

Use an array

Supply multiple values for a single variable
within a script

Use an array

Create an array from a line of text Use the Split function

Create a string value from an array Use the Join Function

Find the upper limit of an array Use the UBound function

Chapter 5

More Arrays

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the fol­
lowing concepts from earlier chapters:

■ Creating single dimension arrays

■ Creating two-dimensional arrays

■ Implementing the For Next construction

■ Implementing the Select Case construction

After completing this chapter, you will be able to:

■ Convert text files into arrays to add power to analysis

■ Convert delimited strings into arrays to enable analysis of log files

■ Work with dictionaries to create on-the-fly storage

Strings and Arrays
In this section, you’ll use text files as an input into your script to dynamically create an array
that you’ll use to do real work. Why is this topic important? Even though we all know about
the event log in Microsoft Windows Server 2003, many network administrators and consult­
ants are unaware of the literally hundreds of other log files lying about on the hard disk drives
of their networks. Indeed, lying about is an appropriate state for the vast majority of these log
files because they contain little in the way of operational guidance for the enlightened net­
work administrator. The following list summarizes uses for converting a text file into an array
construction:

■ Import existing log files for ease of manipulation

■ Import comma-separated value (CSV) lists for ease of script operation

■ Import CSV files to control script execution

Just the Steps To convert a text file into an array

1. Identify a text file to convert to an array by using the fileSystemObject to point to the file.
113

114 Part I Covering the Basics
2. Use the InStr function to parse the data.

3. Use the file system object to connect to a data source.

4. Use a dynamic array to hold the data.

5. Use LBound and UBound to set the limits when we iterate through the array.

Parsing Passed Text into an Array
In this example, you work through a script that creates a dynamic array used to hold informa­
tion parsed from the Windows 2003 setup log file, Setuplog.txt.

More Info When we parse text, we are looking through the text to identify word strings,
numbers, or even case sensitive letter matches using the InStr function. This technique is foun­
dational to working with text files, log files, and even event logs. You can use multiple InStr
functions in the same script to come up with complex test scenarios. For advanced pattern
matching, you can use Regular Expressions, which are documented in the Platform SDK (\My
Documents\Microsoft Press\VBScriptSBS\Resources\Scripts56.chm).

One issue to note: If you’re working on an upgraded version of Windows 2003, your Setu­
plog.txt file is contained in the WINNT directory. If you’re working with a fresh installation,
the Setuplog.txt file is contained in the Windows directory. The reason for this is that begin­
ning with Microsoft Windows XP, the name of the default Windows directory was changed
from WINNT to Windows. However, in an upgrade, the Windows directory cannot be
renamed without potentially breaking applications.

In our script, SearchTXT.vbs, you create a dynamic array and set its initial size to zero. You
next make a connection to the file system object and open the Setuplog.txt file, located in the
Windows directory (this path may be edited if required), for reading. Once the Setuplog.txt
file is opened for reading, you define a search string of “Error” and use the InStr command to
look through each line. If the string “Error” is found on the line being examined, the line with
the error is added to the array. You then increment the next element in the array in case you
find another line with the string “Error” in it. After you go through the entire text file, you use
a For…Next loop and echo out each element of the array. The script concludes with a friendly
“all done” message. The code for SearchTXT.vbs follows.

SearchTXT.vbs
Option Explicit

On Error Resume Next

Dim arrTxtArray()

Dim myFile

Dim SearchString

Dim objTextFile

Dim strNextLine

Chapter 5 More Arrays 115
Dim intSize

Dim objFSO

Dim i

intSize = 0

myFile = "c:\windows\setuplog.txt" <'>Modify as required

SearchString = "Error"

Const ForReading = 1

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTextFile = objFSO.OpenTextFile _

(myFile, ForReading)

Do until objTextFile.AtEndOfStream

strNextLine = objTextFile.ReadLine

if InStr (strNextLine, SearchString)then

ReDim Preserve arrTxtArray(intSize)

arrTxtArray(intSize) = strNextLine

intSize = intSize + 1

End If

Loop

objTextFile.close

For i = LBound(arrTxtArray) To UBound(arrTxtArray)

WScript.Echo arrTxtArray(i)

Next

WScript.Echo("all done")

Header Information

The Header information section of SearchTXT.vbs contains few surprises at this juncture. The
important aspect in this section is the listing of all the variables contained in SearchTXT.vbs.
This declaring of the variables provides a blueprint for understanding the script. Each variable
and its use is listed in Table 5-1. The Header information section of the script is listed here:

Option Explicit

On Error Resume Next

Dim arrTxtArray()

Dim myFile

Dim SearchString

Dim objTextFile

Dim strNextLine

Dim intSize

Dim objFSO

Dim i

Table 5-1 Variables declared in SearchTXT.vbs

Variable Use

arrTxtArray() Declares a dynamic array

myFile Holds the file name of the file to open up

SearchString Holds the string to search for

objTextFile Holds the connection to the text file

strNextLine Holds the next line in the text stream

intSize Holds the initial size of the array

116 Part I Covering the Basics
Table 5-1 Variables declared in SearchTXT.vbs

Variable Use

objFSO Holds the connection to the file system object

i Used to increment intSize counter

Reference Information

The Reference information section of the script is used to assign values to many of the vari­
ables that are declared in the Header information section. The Reference information section
of SearchTXT.vbs follows.

intSize = 0

myFile = "c:\windows\setuplog.txt"

SearchString = "Error"

Const ForReading = 1

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTextFile = objFSO.OpenTextFile _

(myFile, ForReading)

The variable intSize is used to hold the value of the initial size of the dynamic array used in this
script. It is set to zero because you do not know how many items you will have in your
dynamic array. You start with the value of zero, and then you later increase the array to the
required size as you read through the log file. A different approach would be to create an array
that is much larger than you think you’d need and then populate the array with the items
gathered from the log file. However, there are at least two problems with this approach:

■ Creating an array that is too large wastes memory resources

■ Creating an array that is too large results in too many elements that have a zero value

The myFile variable is assigned to the physical location of the log file you want to parse. In this
instance, you are looking at the Windows Server 2003 setup log file contained in the Win­
dows directory. This is one modification you will need to make to your script—changing the
location and name of the log file you want to parse. By creating a variable called myFile, and by
assigning it to a log file in the Reference information section of the script, you make it easy to
modify the script for future use. By simply changing the file you want to parse, you can use
this script to peruse many different log files.

SearchString is the variable that holds the string of letters you want to glean from the log file.
As the script currently stands, you are searching for the word “Error” in the Windows Server
2003 setup log file. By searching for “Error,” you create an array that holds all the errors that
occurred during the installation of the Windows Server 2003 server.

You create a constant called ForReading and set it to the value of 1. Then the next step is to cre­
ate a FileSystemObject and use the ForReading constant to open the log file. When you open a
text file using a FileSystemObject, you must tell VBScript whether you’re going to open the file

Chapter 5 More Arrays 117
and read from it, or open the file and write to it. In your script, you need only to be able to read
from the file to find the lines containing the word Error.

Note For more information about creating and using constants, refer to Chapter 2, “Loop­
ing Through the Script.”

You now use the Set command to assign the variable objTextFile to be equal to the command
that opens the text file for reading. Here is the syntax for this command:

Set New variable Command File name Read or write

Set objTextFile objFSO.OpentextFile myFile ForReading

Worker Information

The Worker information section of the SearchTXT.vbs script, shown in the following
code, is where you create a text-processing engine. This engine is made up of the following
components:

■ Do Until...Loop

■ If...Then loop

■ ReDim Preserve

Do Until objTextFile.AtEndofStream

strNextLine = objTextFile.ReadLine

If InStr (strNextLine, SearchString) Then

ReDim Preserve arrTxtArray(intSize)

arrTxtArray(intSize) = strNextLine

intSize = intSize + 1

End If

Loop

objTextFile.Close

Do Until…Loop is used to walk through the text stream that comes from the connection to our
setup log file. The Do Until structure controls the entire process and will continue working
until it comes to the end of the data stream (which incidentally occurs when you reach the
bottom of the text file).

The variable strNextLine is assigned to the line of text that comes from the text file when you
use the ReadLine command on objTextFile. (Remember that you defined objTextFile to be
textStreamObject you get back from the setup log file. You do this by using the read-only ver­
sion of the OpenTextFile command in the Reference information section of the script.)

You use an If…Then structure to look through strNextLine for the value contained in the vari­
able you called SearchString. In the Reference section, you assigned the value of “Error” to the

118 Part I Covering the Basics
variable SearchString. You use the InStr command to search strNextLine for the text string
“Error.” The InStr command has the following syntax:

InStr
Starting position
(optional)

String being
searched String searched for

Compare mode (op­
tional)

InStr strNextLine SearchString

When using InStr, the starting position is the first character in the text string to be searched.
It is important to remember that the InStr command is not zero-based. A position that is actu­
ally 38 spaces away will be reported as 38. The optional starting position field of the InStr
command is useful when parsing certain log files that begin each line with a time stamp or
other information that makes the file difficult to parse. By skipping past the time stamp, you
can parse the line more easily.

Note Many of the commands you use in VBScript are, for whatever reason, zero-based,
which means that you start counting at zero. But now you come to InStr, which is not zero-
based. A position that is 12 spaces away will be reported as 12. Forget this fact, and your scripts
will act really strange.

If the InStr command finds the search text in the search string, you use ReDim Preserve to
expand the array by one element. ReDim Preserve actually performs two tasks. The first is to
resize the array, and the second is to make sure you don’t lose any data when the array is
resized. The arrTxtArray(intSize) = strNextLine line adds the value contained in strNextLine to
the arrTxtArray element identified by the intSize variable. The intSize = intSize + 1 construct
increases the intSize variable by 1. You’ll use this variable to add one more element to your array
when the InStr command finds an additional line containing the word “Error” in the text string.

When you reach the end of the data string, you use End If to end the If loop and the objText-
File.Close command to close the text file. This closing step is not really required, because the
text file automatically closes when the program quits; however, this step is considered good
practice and can prevent potential file-locking problems in the future.

Output Information

After you load the array with the information gathered from the setup log file, you really have
accomplished only half of the task. This is because constructing an array and not using it is
pretty well useless. In this script, you’re going to simply echo out the lines found that contain
the word “Error” in them. In many cases, echoing the errors out is sufficient. In later chapters,
you’ll learn how to save this information to a text file for future manipulation if desired.
Because your script is modular in its design, you could easily replace this Output information
section with one that saves to a text file or creates a Web page, or one that creates and sends
an e-mail.

Chapter 5 More Arrays 119
You use a For…Next loop to work through the lower boundary and the upper boundary of
your dynamic array. Once you get to each new element in the array, you use the WScript.Echo
command to print to the screen the data contained in that element of the array. Then use the
Next command to go back and read the next element in the array. You continue to do this until
you reach the upper boundary of the array. Once you reach the end of the array, you use
WScript.Echo to let yourself know that the script completed successfully. This section of the
script is listed here:

For i = LBound(arrTxtArray) To UBound(arrTxtArray)

WScript.Echo arrTxtArray(i)

Next

WScript.Echo("all done")

Quick Check

Q. What is the advantage of using a dynamic array?

A. You can expand a dynamic array when a new element is needed. This saves memory and
is more efficient.

Q. How is ReDim Preserve used?

A. ReDim Preserve is used to resize a dynamic array while ensuring that the data contained
in the array is not lost.

Use the InputBox function and separator line function

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch05\MultiValuesSearch.vbs in
Microsoft Notepad or your script editor of choice. Save the script as
YourNameSearchTXTMultiValues.vbs.

2.	 Declare three new variables to be used for the InputBox function. The variables are:

strPrompt, strTitle, and strDefault. This is seen below:

Dim strPrompt,strTitle,strDefault 'used for input box

3.	 In the Reference section, assign value to strPrompt. The value assigned to strPrompt will
appear in the gray section of the input box. It should tell the user to enter values to
search for, and it should specify the name of the text that will be searched. It will look
something like the following:

strPrompt = "Enter error words to search for in: " & _

VbCrLf & myFile

4.	 Under the entry for strPrompt, assign value to the strTitle variable. This will appear at the
top of the input box and should inform the user of the purpose of the input box. My
entry looks like the following:

strTitle = "Error locator"

120 Part I Covering the Basics
5.	 Under the entry for strTitle, assign value to strDefault. This will be the multiple strings
searched for in the text file if the user just presses Enter and does not edit the input box.
Make sure to not put spaces between the comma-separated values. Otherwise, when the
Split function breaks the line into an array, the InStr function will search for a space as
well as the value. My entry looks like the following:

strDefault = "Error,failed,unable to,was NOT"

6.	 Modify the searchString variable so that it is equal to what is returned from the InputBox
function. It will look like the following:

SearchString = InputBox(strPrompt,strTitle,strDefault)

7.	 Save and run the script. You should see an input box appear, and when you press Enter,
the script should search for the values you entered for strDefault. If this does not happen,
compare your script to \My Documents\Microsoft Press\VBScriptSBS\ch05
\SearchTXTMultiValues.vbs.

8.	 Now let’s clean up the output just a little to make it easier to read. To do this, we will use
the funLine function. Copy the function from the \My Documents\Microsoft
Press\VBScriptSBS\Utilities\FunLine.vbs file. The function is seen below. You will
paste it at the very bottom of your script.

Function funLine(lineOfText)

Dim numEQs, separator, i

numEQs = Len(lineOfText)

For i = 1 To numEQs

separator = separator & "="

Next

FunLine = VbCrLf & lineOfText & vbcrlf & separator

End Function

9.	 Use the funLine function to create a header for the listing of each line that corresponds
to a searched value. In this header, list how many matches were found. This header will
go just before the For i = 0 To UBound(arrTxtArray) line of code in the Output section of
your script. My header line looks like the following:

WScript.Echo funLine("There are " & ubound(arrTxtArray) &_

" Lines with " & """" & Item & """" & " in them")

10.	 Save and run the script. It should produce an output that looks similar to the following
(abbreviated):

There are 58 Lines with "Error" in them

=======================================

07/16/2005 16:28:31.109,d:\xpsprtm\base\ntsetup\ …

Chapter 5 More Arrays 121
11.	 If you look closely, you will notice that the script counts incorrectly. There are actually
59 lines in my log file that have the word “Error” in them. This is due to the array being
zero based. To fix this, we need to add 1 to our count. This is seen below:

WScript.Echo funLine("There are " & ubound(arrTxtArray)+1 &_

" Lines with " & """" & Item & """" & " in them")

12.	 If your output does not look like this, or if you receive an error, compare your script to
SearchTXTMultiValues.vbs.

Parsing Passed Text
One nice thing you can do with arrays is use them to hold the results of parsing a comma-sep­
arated value (CSV) file. With Windows Server 2003, you can easily create a CSV file from the
event viewer. Right-click the log you are interested in, select Save As from the menu, and choose
CSV File. Now, suppose you have a file such as a CSV (I included an application log, \My Doc­
uments\Microsoft Press\VBScriptSBS\ch05\appLog.csv, from one of my test machines) and
you’re trying to find out about Windows Installer errors on that server. Well, you can try to
weed through all those long lines of text, or you can open the file up in Microsoft Office Excel,
or you can use a script to do the heavy lifting.

Just the Steps To convert a CSV file into an array

1. Identify a CSV file to convert into an array by using fileSystemObject to point to
the file.

2. Use the InStr function to parse the data.

3. Use the file system object to connect to a data source.

4. Use a dynamic array to hold the data.

5. Use LBound and UBound to iterate through the array.

6. Use the Split function to break the text line into elements.

7. Add the new elements into a multidimensional array.

The ParseAppLog.vbs script follows. Remember, the script will need to be in the same path as
the appLog.csv file.

ParseAppLog.vbs
Option Explicit

On Error Resume Next

Dim arrTxtArray()

Dim appLog

Dim SearchString

Dim objTextFile

Dim strNextLine

Dim intSize

Dim objFSO

122 Part I Covering the Basics
Dim i

Dim ErrorString

Dim newArray

intSize = 0

appLog = "applog.csv" <'>Ensure in path

SearchString = ","

ErrorString = "1004"

Const ForReading = 1

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTextFile = objFSO.OpenTextFile _

(appLog, ForReading)

Do until objTextFile.AtEndOfStream

strNextLine = objTextFile.ReadLine

if InStr (strNextLine, SearchString)Then

If InStr (strNextLine, ErrorString) then

ReDim Preserve arrTxtArray(intSize)

arrTxtArray(intSize) = strNextLine

intSize = intSize + 1

End If

End If

Loop

objTextFile.close

For i = LBound(arrTxtArray) To UBound(arrTxtArray)

If InStr (arrTxtArray(i), ",") Then

newArray = Split (arrTxtArray(i), ",")

WScript.Echo "Date: " & newArray(0)

WScript.Echo "Time: " & newArray(1)

WScript.Echo "Source: " & newArray(2)& " "& newArray(3)

WScript.Echo "Server: " & newArray(7)

WScript.Echo "Message1: " & newArray(8)

WScript.Echo "Message2: " & newArray(9)

WScript.Echo "Message3: " & newArray(10)

WScript.Echo " "

End If

Next

WScript.Echo("all done")

Tip Why save an event log as a CSV instead of as an .evt file, which is the default for an Event
Viewer backup file? Keep in mind that a .evt file is a binary file and it has a dependency to
dynamic-link library (.dll) files that reside on the server that hosted the event log file. These .dll
files provide the description information to the Event Viewer application. This means that if
you export the log file as a .evt file and then open it on your laptop or other personal com­
puter, you may find many of the event log entries report they are missing the description. This
is due to the .dll files from the server not residing on your laptop or on your personal com­
puter. One way around this would be to install the server application onto your laptop or per­
sonal computer (not a very good idea). For this reason, saving a log file from the server as a
CSV file makes the file independent of the installed applications because the CSV file will con­
tain the event descriptions as well as the event ID numbers.

Chapter 5 More Arrays 123
Header Information

The Header information section in ParseAppLog.vbs is similar to the Header section in the
previous script. The declared variables are listed in Table 5-2.

Table 5-2 Variables declared in ParseAppLog.vbs

Variable Use

arrTxtArray() Declares a dynamic array

appLog Holds the file name of the file to open

SearchString Holds the string to search for

objTextFile Holds the connection to the text file

strNextLine Holds the next line in the text stream

intSize Holds the initial size of the array

objFSO Holds the connection to the file system object

i Used to increment the intSize counter

ErrorString Holds the second search string used

newArray New array created to sort the output

Reference Information

The Reference information section is where you assign values to certain variables and define
constants that are used in the script. Here is the Reference information section of the script:

intSize = 0

appLog = "appLog.CSV"

SearchString = ","

ErrorString = "1004"

Const ForReading = 1

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTextFile = objFSO.OpenTextFile _

(appLog, ForReading)

You use appLog is used to point to the CSV file you want to parse. You use SearchString to spec­
ify that you want to look for commas. The error string you are looking for in this script is 1004,
which is an error from MSI installer. By changing the error message ID, you can use the script
to look for everything from dropped Internet Protocol (IP) packets from the Microsoft Inter­
net Security and Acceleration Server (ISA) to bad logon attempts from Windows Server 2003.

Important This technique won’t perfectly parse every CSV file in the world. Some are very
complex and include commas and even line feeds within single pieces of data.

Although special rules for advanced parsing are beyond the scope of this chapter, you are
unlikely to need advanced parsing with normal application setup logs (and you definitely
won’t see this need in CSV files exported from the Event Viewer).

124 Part I Covering the Basics
Worker Information

In the Worker information section of the script, things start to get a little interesting. You
begin by using a Do Until construction that looks for the end of the read-only text string com­
ing from objTextFile. You then define strNextLine to be equal to what comes back from the
ReadLine command that we used on objTextFile. The magic begins when you use the InStr
command to look for commas in the line-by-line streams of text. After you find a comma in a
line, you look for the error message ID of 1004, which indicates a problem with an MSI
installer package. By nesting a pair of If…Then statements and using InStr, you easily filter only
the desired messages. As a result, the size of the array is smaller and less memory is required.
You haven’t implemented error handling here, which could easily be accomplished by using
the Else command.

Do Until objTextFile.AtEndofStream

strNextLine = objTextFile.ReadLine

If InStr (strNextLine, SearchString) > 0 Then

If InStr (strNextLine, ErrorString) > 0 Then

ReDim Preserve arrTxtArray(intSize)

arrTxtArray(intSize) = strNextLine

intSize = intSize + 1

End If

End If

Loop

objTextFile.Close

Output Information

After the array arrTxtArray is created, each element of the array contains an entire event mes­
sage from the event log. You could just print out each line, but a more functional approach is
to organize the data so that it is more comprehensible. To this end, you create a multidimen­
sional array that holds specific elements of the event message. You begin the Output informa­
tion section by using For…Next to walk from the lower boundary of the single dimensional
array arrTxtArray to the upper boundary of arrTxtArray. You then look for commas in each
line contained in the elements incremented by using the i counter. Once this is done, you
build the multidimensional array and echo out only the elements that contain information
you’re interested in seeing. The script ends by echoing out an “all done” message.

For i = LBound(arrTxtArray) To UBound(arrTxtArray)

If InStr (arrTxtArray(i), ",") Then

newArray = Split (arrTxtArray(i), ",")

WScript.Echo "Date: " & newArray(0)

WScript.Echo "Time: " & newArray(1)

WScript.Echo "Source: " & newArray(2)& " "& newArray(3)

WScript.Echo "Server: " & newArray(7)

WScript.Echo "Message1: " & newArray(8)

WScript.Echo "Message2: " & newArray(9)

WScript.Echo "Message3: " & newArray(10)

WScript.Echo " "

End If

Next

Chapter 5 More Arrays 125
Quick Check

Q. What is the simplest way to break up a CSV data stream to populate an array?

A. You need to use the Split command and look for commas.

Q. What is the InStr command used for?

A. The InStr command is used to look for character combinations in a stream of text.

Q. What construct can be used to hold data records that are separated by commas?

A. A multidimensional array can be used to hold this type of data.

Working with Dictionaries
I don’t know about you, but I usually think about using a dictionary to check the spelling of
a word or to find a definition. In Windows Scripting, however, a dictionary has nothing to do
with either of these concepts, although its use is just as important, perhaps more so. So what
is a dictionary in our context? Well, a dictionary is kind of like an array, only easier to work
with. It is a place to hold data. Just like an array can be used to hold data in a convenient place
for use within the script, a dictionary also holds data. A dictionary works like a single dimen­
sion array. You can store only one column’s worth of data in your dictionary.

Because enterprise scripts have to get information from other places (a command-line argu­
ment, a text file, or an Active Directory Services Interface [ADSI] query), it is convenient to
store the information locally to avoid repeated calls to the outside source. Once the informa­
tion is local, you can manipulate it into a more manageable form. In Chapter 4, “Working with
Arrays,” and earlier in this chapter, you looked at using arrays to store information locally. In
certain situations, you can use a dictionary to perform the same type of activity—that is, for
convenience, you can temporarily store working information in the Dictionary object.

As mentioned earlier, the dictionary works like an array in that each item in the dictionary is
stored with its associated key. The key is used to identify the value we want to store, or
retrieve, from the dictionary. With an array, we used the index number to retrieve the data. In
the dictionary, we use the key. In a dictionary, we have a key and an item. The dictionary offers
a couple of advantages over arrays. The first advantage is that you can retrieve any specific
item from the dictionary simply by knowing the key, whereas with an array, you need to know
the array index number. The second advantage is that a dictionary doesn’t require any specific
size configuration. With an array, you must either know its exact size or resize it.

Understanding the Dictionary Object

To use the VBScript dictionary, you need to first create it. (In technical terms, the dictionary is
a Microsoft Component Object Model (COM) object and gets created via the CreateObject
method.) The basic syntax for this is seen below:

Set objDictionary = CreateObject("scripting.dictionary")

126 Part I Covering the Basics
Quick Check

Q. What are the advantages of using a dictionary rather than an array?

A. The dictionary enables retrieval of specific items from the dictionary without knowledge
of the index number. In addition, the dictionary is automatically dynamically sized.

Q. Because a dictionary is a COM object, how does it get instantiated?

A. A dictionary gets instantiated by using the CreateObject command.

Compare Mode

The dictionary enables us to configure only one property: the compare mode. This is actually
part of what makes the dictionary easy to use (the lack of configurable properties, not the
compare mode itself). In reality, most of the time, the default compare mode (which is binary
mode) is fine. Compare mode enables you to configure the way in which the dictionary com­
pares items when used to search for previously added items. The other compare mode
(besides binary) is text mode. Text mode is case-insensitive. In binary mode, server1 and
Server1 are two different computers, whereas in text mode they would be the same machine.
It is important to remain aware of these differences.

Note If you want to change the compare mode from binary to text mode, you must do this
before you add any information to the dictionary.

Adding Items to the Dictionary

After you create the dictionary, you add items to it. (It’s basically useless without information,
just like a printed dictionary containing only blank pages.) So how do you add information to
the dictionary? You guessed it—using the Add method. In this example, we are using a number
for the key. This is perfectly acceptable, and we can easily walk through the dictionary via For
… Next. The advantage of the dictionary in the BasicDictionary.vbs script is that it is automat­
ically dynamic.

BasicDictionary.vbs
Option Explicit

Dim objDictionary, i

Set objDictionary = CreateObject("scripting.dictionary")

objDictionary.Add 1, "server1"

objDictionary.Add 2, "server2"

objDictionary.Add 3, "server3"

objDictionary.Add 4, "server4"

For i = 1 To 4

WScript.Echo objDictionary.item (i)

next

Chapter 5 More Arrays 127
In the BasicDictionary.vbs script, you first create the dictionary and assign it to the variable
objDictionary. You use this variable because you use the CreateObject command to make a dic­
tionary, and the name objDictionary tells us that the variable is an object that is a dictionary.
You then add one item to the dictionary, called server1, which is assigned to a key called 1.
From this code, you can see the syntax is add key item, as illustrated here:

Command Key Item

objDictionary.Add 1 Server1

Counting with the count

1.	 Open the BasicDictionary.vbs script in Notepad or your favorite script editor. Save the
file as YourNameBasicDictionaryCount.vbs.

2.	 On the line that reads For i = 1 To 4, change the number 4 to be the count of items in the
dictionary. To do this, we use the Count property, as seen below:

For i = 1 To objDictionary.count

3.	 Save and run the script. You will see it behaves exactly as the BasicDictionary.vbs script.
The advantage of this is that we can now add other items to the dictionary and echo out
the items in the collection without having to change the for i = 1 To 4 line of code each
time.

4.	 Under the For...Next loop, add server5 to the dictionary. Use 5 for the key value. The line
of code must be typed exactly:

objDictionary.Add "5", "Server5"

5.	 Save and run the script. You will notice server5 is not printed out in the output. This is
because we added it after the Output section of the script. To verify the item was added
properly to the dictionary, echo out the count of the dictionary, as seen below:

WScript.Echo "The count after adding key ""5"" with ""server5""" & _

" to the dictionary is " & objDictionary.Count

6.	 Add another For...Next loop after the WScript.Echo line. You can copy the one already
used by the script. It looks like the code below.

For i = 1 To objDictionary.count

WScript.Echo objDictionary.item (i)

Next

7.	 Save and run your script. You will notice the output does not include server5. The output
is seen below:

server1

server2

server3

server4

128 Part I Covering the Basics
The count after adding key "5" with "server5" to the dictionary is 5

server1

server2

server3

server4

Exit code: 0 , 0000h

8.	 Notice there is a blank line after the second printout, right before the exit code.
(Depending on how your script editor is configured, you may or may not have an exit
code printed out at the conclusion of your script.) Query the Count property again to
see if you can find any change. My code looks like the following:

WScript.Echo "The count after using the second for ... next loop "&_

"Is " & objDictionary.Count

9.	 The count has now incremented to 6. Let’s see what is going on with our new server.
Echo out the type name of objDictionary.item("5") by using the TypeName function.

WScript.Echo "Item ""5"" is a " & TypeName(objdictionary.Item("5"))

10.	 Run the script. It reports that the item associated with "5" is a string.

11.	 Modify the echo line to print out the type name of the item associated with 6. This is
seen below:

WScript.Echo "Item 6 is a " & TypeName(objdictionary.Item(6))

12.	 Notice that the item associated with key 6 is empty. What happened is that the dictio­
nary added an empty item to the dictionary. The question at this point is why? To find
out, we will need to work with the keys. We will do this in the next procedure, “The key
to keys.”

Important There are many times when we need to include a quotation mark inside an out­
put string. To do this, we need to “escape” the character. If I use only one quotation mark, then
the script runtime engine will think I am done with my string value and interpret the next char­
acter as a command, which nearly always results in errors. In the Counting the count proce­
dure, we escape the key value with two sets of quotation marks. What really looks strange is the
three quotation marks in a row at the end of the first line. The extra quotation character is
required to end the first selection of quotes.

The key to keys

1.	 Open BasicDictionaryCount.vbs and save it as YourNameBasicDictionaryKEYS.vbs. You
can use Notepad or your favorite script editor to do this.

2.	 To work with the keys, we will need to create an array of keys so we can walk through
them. To do this, we need to first create two variables: aryKeys and key. This is seen below:

Dim aryKeys 'holds array of keys from keys method

Dim key 'an individual key in the array

Chapter 5 More Arrays 129
3.	 To get a collection of keys, we use the Keys method of the Dictionary object. Assign it to
the aryKeys variable as seen below:

aryKeys = objDictionary.Keys

4.	 To confirm we have an array of keys, let’s use the vartype function to echo out the data
type of aryKeys. This is seen below:

WScript.Echo "aryKeys is " & vartype(aryKeys)

5.	 vartype returns a number. The number for aryKeys is 8204. Open the \My
Documents\Microsoft Press\VBScriptSBS\Resources\Script56.chm file and find the
article associated with vartype. You will see that these values can be additive. Although
these varitype numbers are not listed specifically, they can be determined by adding 8192
(which is an array) to 12 (which is a variant). This tells us that aryKeys is an array of
variants.

6.	 Now use vartype to print out the data type of each key stored in our array of keys. Use
For Each to do this. My code looks like the following:

For Each key in aryKeys

WScript.Echo "key " & key & " is a " & vartype(key)

Next

7.	 Examine the output produced by this script. Look up the vartype of each key in the
Script56.chm file. I have copied the output below:

server1

server2

server3

server4

The count after adding key "5" with "server5" to the dictionary is 5

server1

server2

server3

server4

The count after using the second for ... next loop Is 6

Item "5" is a String

Item 6 is a Empty

aryKeys is 8204

key 1 is a 2

key 2 is a 2

key 3 is a 2

key 4 is a 2

key 5 is a 8

key 5 is a 3

key 6 is a 2

8.	 Notice we have two keys listed for 5. The first is a string. The second is a long. The first
four keys are all integers.

130 Part I Covering the Basics
9.	 Notice there is also a key 6. This one is an integer and not a long. This one was added
when we tried to see the data type of the item associated with the newly added item that
had increased the count. Because we did not know the key, we assumed it would be 6.
However, because there was not a number five in use, that one was added first. Then by
querying a key that did not exist for its type name, we created an additional key in the
dictionary.

10.	 Compare your results with \My Documents\Microsoft Press\VBScriptSBS\ch05\Basic-
DictionaryKeys.vbs.

Caution When we added key 5, we enclosed the number 5 with quotation marks. This
caused the script engine to interpret it as a string, the letter five, instead of as an integer, the
number five. When we used the For…Next command to walk through the items in the dictio­
nary, we were specifying the keys that were integers. However, because we went to the count
of the dictionary, we printed out five items associated with the keys that were integers. Because
the number five did not exist, the Dictionary object added it automatically. Please note: It is
perfectly acceptable to have a mixture of integers and strings as key items in a dictionary; how­
ever, it is very confusing.

Removing items from the dictionary

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch05\Basic

DictionaryKeys.vbs script in Notepad or your favorite editor and save it as

YourNameBasicDictionaryRemoveKeys.vbs.

2.	 At the bottom of the script, echo out the count of the dictionary, so we know what we are
working with. My code looks like the following:

WScript.Echo "before we remove key 6, the count is: " & objDictionary.Count

3.	 Now use the Remove method to remove key 6. Echo out a message telling the user you
are going to remove the key. Concatenate the lines with & and call the Remove method.
This code looks like the following:

WScript.Echo "removing key 6 ..." & objDictionary.Remove(6)

4.	 Confirm the removal of key 6 by using the count again. This line of code looks like the
following:

WScript.Echo "After removal of 6, the count is: " & objDictionary.Count

5.	 Now we want to add "server5" to the item of key 5 (the integer) and remove key 5 (the
string). To do this, however, we want keep the data stored in item("5"). Declare a variable
strItem to hold the data in item("5"). It looks like this:

Dim strItem 'holds data stored in key "5"

Chapter 5 More Arrays 131
6.	 At the bottom of your script, use strItem to hold the data stored in item("5"). The code for
this looks like:

strItem = objDictionary.Item("5")

7. Now remove both key("5") and key(5). Use the following code to remove these keys:

objDictionary.Remove("5")

objDictionary.Remove(5)

8.	 Verify the two keys were removed by checking the count. My code looks like the following:

WScript.Echo "after removing two keys, count is: " & objDictionary.Count

Adding items back to the dictionary

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch05\BasicDictionaryRe­
moveKeys.vbs and save it as YourNameBasicDictionaryAddKeys.vbs. Use Notepad or
your favorite script editor.

2.	 To add data back to the dictionary, we use the Add method. However, because we have
removed several items and added back some other items, we may not be sure of what
the last key in the dictionary is. To avoid creating an error, let’s use the count to create
the proper key. We get the count, which tells us how many items are in the dictionary,
then we add one to it. This gives us the next number in the dictionary. To do this, use the
following code:

objDictionary.Add objdictionary.Count + 1,strItem

3. Verify the data was added by checking the count. I used the following code to do this:

WScript.Echo "after adding back, the count is: " & objDictionary.count

4.	 Print out each item in the dictionary. Use For…Next and go to the count of the dictio­
nary. Use i to indicate the key value and use it with the Item method to retrieve the item
associated with the key. This code is seen below:

For i = 1 To objDictionary.Count

WScript.Echo objDictionary.Item(i)

Next

5.	 To avoid adding empty key values to the dictionary, as we did in the original script, use
the Exists method of the Dictionary object to verify the existence of the key prior to echo­
ing it out. Use an If…Then statement to do this. The following code shows the completed
structure—including the For…Next loop added in step 4.

For i = 1 To objDictionary.Count

If objDictionary.exists(i) Then

WScript.Echo objDictionary.Item(i)

End If

Next

132 Part I Covering the Basics
6.	 You should see all five servers printed out at the bottom of the output. If you do not,
compare your script with BasicDictionaryAddKeys.vbs.

Using Basic InStr Step-by-Step Exercises
In this section, you play with the InStr function to become familiar with the basic features of its
implementation. Because this is a short script, you don’t need to implement a full Header
information section.

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates
\blankTemplate.vbs template in Notepad or your favorite script editor and save the file
as YourNameInstr1.vbs.

2.	 Create a variable called searchString and set it equal to 5. Your line will look like the
following:

searchString = "5"

3.	 Create another variable called textSearched and set it equal to 123456789. Your second
line will look like this:

textSearched = "123456789"

4.	 Create a third variable called InStrReturn and set it equal to the following InStr com­
mand: InStr (textSearched, searchString). This line will look like the following:

InStrReturn = InStr (textSearched, searchString)

5.	 Use the WScript.Echo command to print out the results of the InStr command. This line
will look like the following:

WScript.Echo (InStrReturn)

6.	 Save the file.

7.	 Run the YourNameInstr1.vbs file by double-clicking it. You should see a dialog box with
the number 5 printed in it. This indicates that search string 5 was found in the fifth posi­
tion of the script.

8.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates
\BlankTemplate.vbs template in a script editor save it as YourNameInstr2.vbs.

9.	 Create a variable called searchString and set it equal to 5. Your line will look like the
following:

searchString = "5"

10.	 Create another variable called textSearched and set it equal to 123456789. Your second
line will look like this:

textSearched = "123456789"

Chapter 5 More Arrays 133
11.	 Create a third variable called InStrReturn and set it equal to the following InStr com­
mand: InStr (1, textSearched, searchString, 0). This line will look like the following:

InStrReturn = InStr (1, textSearched, searchString, 0)

12.	 Use the WScript.Echo command to print out the results of the InStr command. This line
will look like the following:

WScript.Echo InStrReturn

13.	 Run YourNameInstr2.vbs by double-clicking it. You should see a dialog box with the
number 5 printed in it. This indicates that the search string 5 was found in the fifth posi­
tion of the script when you started looking from the first position of the search string.

14.	 Change the 1 to a 5 in your InStrReturn line. It will look like the following:

InStrReturn = InStr(5, textSearched, searchString, 0)

15.	 Save your work.

16.	 Run YourNameInstr2.vbs by double-clicking it. You should see a dialog box with the
number 5 printed in it. This indicates that the search string 5 was found in the fifth posi­
tion of the script when you started looking from the fifth position of the search string.

17.	 Change the 5 to a 6 in your InStrReturn line. It will look like the following:

InStrReturn = InStr(6, textSearched, searchString, 0)

18.	 Save your work.

19.	 Run YourNameInstr2.vbs by double-clicking it. You should see a dialog box with the
number 0 printed in it. This indicates that the search string 5 was not found in the
search string when you started looking from the sixth position of the search string.

One Step Further: Creating a Dictionary
In this section, you create a dictionary and then populate it with a list of file names provided
by the file system object.

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates
\BlankTemplate.vbs template in a script editor. Save it as YourNameDictionary.vbs.

2.	 On the first line, type Option Explicit.

3.	 Declare the following variables by using the Dim command:

Dim objDictionary 'the dictionary object

Dim objFSO 'the FileSystemObject object

Dim objFolder 'created by GetFolder method

Dim colFiles 'collection of files from Files method

Dim objFile 'individual file

Dim aryKeys 'array of keys

Dim strKey 'individual key from array of keys

Dim strFolder 'the folder to obtain listing of files

134 Part I Covering the Basics
4.	 In the Reference section of the script, assign a folder to the strFolder variable. I used
c:\windows, but you can use any folder you have rights to access. This is illustrated below:

strFolder = "c:\windows" <'>Ensure correct path

5.	 Use CreateObject to create the dictionary. Assign it to the objDictionary variable, as seen
below:

Set objDictionary = CreateObject("scripting.dictionary")

6.	 Use CreateObject to create the file system object and assign it to the variable objFSO:

Set objFSO = CreateObject("Scripting.FileSystemObject")

7.	 Use the GetFolder method to create a folder object. Use GetFolder to retrieve the folder
represented by the strFolder variable. Assign it to the variable objFolder:

Set objFolder = objFSO.GetFolder(strFolder)

8.	 Use the Files method of the Folder object represented by the objFolder variable. Assign it
to colFiles, as seen below:

Set colFiles = objFolder.Files

9.	 Use For Each to iterate through colFiles:

For Each objFile In colFiles

10.	 Use the Add method of the Dictionary object to add the file name and the file size to the
dictionary. The file name will be the key, and the file size will be the item associated with
the key. This is seen below:

objDictionary.Add objFile.Name, objFile.Size

11.	 Close out the For Each…Next loop by using the Next statement.

Next

12.	 Assign aryKeys to the Keys array of the dictionary that gets created by using the Keys
method.

aryKeys = objDictionary.Keys

13.	 Use For Each to iterate through the collection of keys:

For Each strKey In colKeys

14.	 Echo out the file name and the file size:

WScript.Echo "The file: " & strKey & " is: " & _

objDictionary.Item(strKey) & " bytes"

15.	 Close out the For Each…Next construction by typing Next.

16.	 Add a header to the report of files that are contained in the directory listing. Do this by
using the strFolder variable, which contains the name of the folder being reported. This
line will need to go before the For Each…Next construction and is seen below:

WScript.Echo "Directory listing of " & strFolder

Chapter 5 More Arrays 135
17.	 On the next line, use the Count property of the Dictionary object to list the number of
files in the folder. This is seen below:

WScript.Echo "***there are " & objDictionary.count & " files"

18.	 Save and run your work using Cscript. If it does not run properly, compare your script
with \My Documents\Microsoft Press\VBScriptSBS\ch05\OneStepFurther\
Dictionary.vbs.

Chapter 5 Quick Reference

To Do This

Use a string to populate an array Use the Split function to turn the string into an
array

Resize a dynamic array	 Use the ReDim command

Resize a dynamic array and keep the existing Use the ReDim command with the Preserve
data in it keyword

Change the way string values are compared in a Change the Compare Mode property of the
Dictionary object dictionary object

Create a Dictionary object Use the createObject command and specify the
scripting.dictionary program ID

Determine how many items are in the dictionary Use the Count property

Determine if an item exists in the dictionary prior Use the Exists method
to adding it

Obtain a collection of keys from the dictionary Use the Keys method

Part II
Basic Windows Administration

In this part:

Chapter 6: Working with the File System . 139

Chapter 7: Working with Folders . 165

Chapter 8: Using WMI . 187

Chapter 9: WMI Continued . 207

Chapter 10: Querying WMI . 227

Chapter 6

Working with the File System

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from earlier chapters:

■ Using the For Each…Next construction

■ Applying Select Case constructions

■ Adopting constants

■ Implementing intrinsic VBScript properties such as VbTab and Now

■ Employing If…Then…Else

After completing this chapter, you will be able to:

■ Create an instance of the FileSystemObject object

■ Obtain a listing of files in a folder

■ Create files

■ Verify the existence of a file

■ Obtain a listing of the properties associated with a file

■ Read and write file attributes

Creating the File System Object
To talk to the file system, the script needs to make a connection to it so that it can read files
and folders. The tool used with Microsoft Visual Basic, Scripting Edition (VBScript) is called
the file system object. Once an instance of the file system object is created, you can leverage its
power to perform some or all of the following tasks:

■ Create files and folders

■ Copy files and folders

■ Move files and folders

■ Delete files and folders

■ List properties of files and folders
139

140 Part II Basic Windows Administration
Just the Steps To enumerate a list of files

1. Use CreateObject to create the file system object.

2. Define the folder to be searched by using GetFolder.

3. Use the Files command to list files.

4. Use a For Each statement to walk through the folder.

File It Under Files
In your first file system script, ListFiles.vbs, connect to FileSystemObject, attach it to a folder
defined by the variable FolderPath, and then use the Files command to enable the For Each
loop to echo out each file in the folder. This is just the beginning of what can be done with this
script. Continue to think of ways to expand this script so that you can perform some really
useful network administration tasks.

ListFiles.vbs
Option Explicit

On Error Resume Next

Dim FolderPath 'path to the folder to be searched for files

Dim objFSO 'the FileSystemObject

Dim objFolder 'the folder object

Dim colFiles 'collection of files from files method

Dim objFile 'individual file object

FolderPath = "c:\fso"

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFolder = objFSO.GetFolder(FolderPath)

Set colFiles = objFolder.Files

For Each objFile in colFiles

WScript.Echo objFile.Name, objFile.Size & " bytes"

WScript.Echo VbTab & "created: " & objFile.DateCreated

WScript.Echo VbTab & "modified: " & objFile.DateLastModified

Next

Header Information

In the Header information section of ListFiles.vbs are the normal Option Explicit and On Error
Resume Next commands. These are used to specify the declaration of all variables and to pro­
vide rudimentary error suppression. Next, five variables will need to be declared. These vari­
ables and the description of their use are listed in Table 6-1.

Table 6-1 Variables used in ListFiles.vbs

Variable name Use

FolderPath Defines the folder to be enumerated in the script

objFSO Creates FileSystemObject

Chapter 6 Working with the File System 141
Table 6-1 Variables used in ListFiles.vbs

Variable name Use

objFolder Holds the connection to the folder whose path is stored in the FolderPath
variable. The connection is returned by the GetFolder method of FileSys­
temObject

colFiles Holds the collection of files returned by using the Files method

objFile Holds individual files as the script iterates through the collection of files
by using the For Each construction

For more information about using the Option Explicit and On Error Resume Next com­
mands, see Chapter 1, “Starting from Scratch.”

Reference Information

The Reference information section of the ListFiles.vbs script is similar to other scripts. Assign
a value to the FolderPath variable created in the Header information section. The FolderPath
variable is used to make the script easier to modify in the future. By changing the path con­
tained in the FolderPath variable, the script can list files on any machine. In addition, Folder-
Path provides a great deal of flexibility.

With just a little work, ListFiles.vbs can be modified to take command-line input or to find the
value for FolderPath by reading a list of paths from a text file. Perhaps a more intriguing way of
obtaining the folder path is to use the BrowseForFolder method from the Shell.Application
object we used in Chapter 1. The graphical tool created by this method is seen in Figure 6-1.

The complete Reference information section follows:

FolderPath = "C:\fso"

Figure 6-1 Use BrowseForFolder to obtain the folder path

142 Part II Basic Windows Administration
Worker and Output Information

The Worker and Output information section of the ListFiles.vbs script first creates the file
sytem object and assigns it to the objFSO variable. objFSO is used to hold the instance of File-
SystemObjectthat comes back from the CreateObject command. By using the CreateOb­
ject(“Scripting.FileSystemObject”) command, you can work with the file system to enumerate
all the files in the folder.

The folder from which files are listed is defined by using the GetFolder method. The variable
objFolder is used to hold the copy of the folder object that is created by using the GetFolder
method of the FileSystemObject as seen in the code objFSO.GetFolder(FolderPath). FolderPath is
the variable that is used to hold the path to the folder whose contents we want to enumerate.

Once connected to the folder, you use the Files method to get a list of files contained in the
folder. Assign this list of files to the colFiles variable by using the following code:

Set colFiles = objFolder.Files

Next, use a For Each…Next loop to walk through the collection of files returned by the File
method. The WScript.Echo command is used to display the file name and the file size. The
complete Worker and Output information is seen below:

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFolder = objFSO.GetFolder(FolderPath)

Set colFiles = objFolder.Files

For Each objFile in colFiles

WScript.Echo objFile.Name, objFile.Size & " bytes"

Next

Browse for a folder and list file properties

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch06\ListFiles.vbs script in
Microsoft Notepad or your favorite script editor and save it as YourNameBrowseFolder-
ListFiles.vbs.

2.	 Declare a new variable that will be used to hold the output from script. Call it strOUT, as
seen below:

Dim strOUT 'single output variable

3.	 Open CheckForWScript.vbs from the Utilities folder and copy the subroutine to the bot­
tom of your script. The sub looks like the following:

Sub subCheckWScript

If UCase(Right(WScript.FullName, 11)) = "CSCRIPT.EXE" Then

WScript.Echo "This script must be run under WScript."

WScript.Quit

End If

End Sub

Chapter 6 Working with the File System 143
4.	 Open the BrowseFolderSub.vbs script from the Utilities folder and copy the subroutine
to the bottom of your script. The sub looks like the following:

Sub subGetFolder

Dim objShell, objFolder, objFolderItem, objPath

Const windowHandle = 0

Const folderOnly = 0

const folderAndFiles = &H4000&

Set objShell = CreateObject("Shell.Application")

Set objFOlder = objShell.BrowseForFolder(windowHandle, _

"Select a folder:", folderOnly)

Set objFolderItem = objFolder.Self

objPath = objFolderItem.Path

End Sub

5.	 Call the subCheckWScript subroutine, then call the subGetFolder subroutine. Place these
two calls to the subroutines directly under the variable Declarations in the Header sec­
tion of the script. This is seen below:

subCheckWScript'ensures script is running under WScript

subGetFolder'calls the BrowseForFolder method

6.	 Save your script, but do not run it yet, because it will result in errors.

7.	 Go back to the subGetFolder subroutine and in the line that builds the path, change the
objPath variable to FolderPath. Delete objPath from the Declarations section in the sub­
routine as well. The modified line looks like the following:

FolderPath = objFolderItem.Path

8.	 Inside the For Each…Next loop in the Worker section of the main script, modify the out­
put so that instead of making a series of WScript.Echo boxes, it will not make any. This
will enable you to capture the output into a single variable. This facilitates future modi­
fication, by having all the output in a single variable. To do this, set the strOUT variable
to be equal to itself and the two properties. Add VbCrLf at the end of the line to list each
file name and size on an individual line. This is seen below:

For Each objFile in colFiles

strOUT = strOUT & objFile.Name & VbTab & objFile.Size _

& " bytes" & VbCrLf

Next

9.	 After the For Each…Next loop, use WScript.Echo to print out the strOUT variable. This is
seen below:

WScript.Echo strOUT

10.	 In the Reference section of the script, delete FolderPath = "c:\fso" because FolderPath is
assigned its value in the subGetFolder subroutine.

144 Part II Basic Windows Administration
11.	 Save and run the script under WScript. It should produce a single output box listing the
files and their size. If it does not, compare your script to the \My Documents\Microsoft
Press\VBScriptSBS\ch06\BrowseFolderListFiles.vbs script.

Quick Check

Q. What is required to talk to the file system by using FileSystemObject?

A. You can use FileSystemObject by first using the CreateObject command, and then
assigning to a variable the object that comes back.

Q. Why do you want an object for FileSystemObject?

A. You want a object for FileSystemObject because it enables you to work with files and folders.

File Properties
Name and Size are just two file properties that can be obtained by using FileSystemObject. A file
property describes aspects of the file such as when it was created, when it was last accessed,
when it was modified, its path, its size, and its type. The intrepid network administrator can
enumerate various file properties, which can be used for both security purposes and user data
management. For example, as shown in the following code, you can add a couple of lines to
the ListFiles.vbs script to retrieve additional data—in this case, the date the file was created
and the date it was last modified. The VbTab constant is added to make the output easier to
read. The completed script is saved as \My Documents\Microsoft
Press\VBScriptSBS\ch06\ListFilesExtProperties.vbs. Here are the additional lines:

WScript.Echo VbTab & "created: " & objFile.DateCreated

WScript.Echo VbTab & "modified: " & objFile.DateLastModified

Additional file object properties can be retrieved in the same manner. All are listed in Table 6-2.

Table 6-2 File properties

Property Use

Attributes Bitmask representation of the file attributes such as read-only and
hidden.

DateCreated Date the file was created.

DateLastAccessed Date the file was last accessed.

DateLastModified Date the file was last modified.

Drive The drive letter representing where the file is stored, followed by a colon
(for example, C:).

Name The name of the file, not including the path information (for example,
ListFiles.vbs). The name does include the extension.

ParentFolder The folder in which the file is located (not including subfolders).
For example, the parent folder of C:\windows\system32\logfile.txt is
Windows.

Chapter 6 Working with the File System 145
Table 6-2 File properties

Property Use

Path The full path of the file (for example, C:\windows\system32\logfile.txt).

ShortName 8.3 (MS-DOS format) version of the file name. For example,
MyLongFileName.txt might become MyLong~1.txt.

ShortPath 8.3 (MS-DOS style) version of the path. For example, C:\MyLongPath
\MyLongFileName.txt might become C:\MyLong~1\MyLong~1.txt.

Size The size of the file in bytes.

Type The type of file as recorded in the registry. For example, a .doc file is listed
as a Microsoft Word document.

File Attributes
File attributes are aspects such as read-only, hidden, system, and archive that are used to con­
figure how a file can be used by the operating system. These are the same attributes you can
set via the attrib.exe command or the Properties Action menu in Explorer.exe, as seen in Fig­
ure 6-2. These attributes are not hidden from ordinary users (they are easily read in
Explorer.exe), and they are used to control how backups run and to prevent accidental over­
writing of important configuration and system files. This fact makes file attributes of interest
to network administrators.

Figure 6-2 File attributes can be read or set via the Attributes property

146 Part II Basic Windows Administration
A file attribute is stored as a bitmask value to conserve space. When you query the file
attribute, only a single integer is returned. When a file is hidden, VBScript returns a 2. When
a file is a system file, VBScript returns a 4. When, however, a file is both a hidden file and a sys­
tem file, VBScript return a 6 because the numbers get added together. The numbers are
arranged so that each attribute or combination of attributes returns a unique numeric value.
There are a number of possible combinations, each of which would need to be tested in a
script returning these attributes. The bits representing each attribute value are listed in Table
6-3. A function that inteprets these combinations of integers is FunAttrib.vbs in the Utilities
folder on the CD. This function is used in the FileAttributes.vbs script and will be examined
shortly.

Table 6-3 File attributes and bitmask values

Attribute Bitmask value Meaning

Normal 0 No attributes set

Read-only 1 File can be read but not changed

Hidden 2 File cannot be seen in default view of Microsoft
Windows Explorer

System 4 File is used by the operating system (OS)

Archive 32 File changed since last backup

Alias 64 File is a shortcut to another file

Compressed 2048 File has been compressed

Just the Steps To access file attributes

1. Create an instance of FileSystemObject.

2. Use the GetFile method to bind to the file.

3. Use the Attributes method to return the bitmask value.

Implementing the Attributes Property

In the FileAttributes.vbs script, you first use CreateObject to create an instance of FileSystemOb­
ject. Once the instance is created, you use GetFile to provide a reference to a specific file (in this
case, C:\fso\test.txt). After you have a reference to the Test.txt file, you echo out the file name
and also the attribute number by using the Attributes property in conjunction with the
WScript.Echo command. Finally, you use a function that AND’s the different values to build up
a string that represents the exact file attributes that are set. When you AND two binary num­
bers, one AND one is equal to one. One AND zero is equal to zero. Zero AND zero is equal to
zero. This is a great way to work with bitmask values. By using AND we can see if a value is
present in a particular location in a bitmask number. This is seen in Figure 6-3.

Chapter 6 Working with the File System 147
Alia
s

Arch
ive

Dire
cto

ry

Vo
lum

e

Sy
ste

m

Hid
den

Re
ad

Only

64 32 16 8 4 2 1

AND

32
T est.t xt

Arch
ive

Result

32

Figure 6-3 Use AND to identify file attributes

FileAttributes.vbs
Option Explicit

On Error Resume Next

Dim objFSO

Dim objFile

Dim Target

Target = "C:\fso\test.txt"

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFile = objFSO.GetFile(Target)

WScript.Echo "The file is: " & target

WScript.Echo "bitmap number is: " & objFile.Attributes & _

" " & funAttrib(objFile.attributes)

Function funAttrib(intMask)

Dim strAttrib

If IntMask = 0 Then strAttrib = "No attributes"

If intMask And 1 Then strAttrib = strAttrib & "Read Only, "

If intMask And 2 Then strAttrib = strAttrib & "Hidden, "

If intMask And 4 Then strAttrib = strAttrib & "System, "

If intMask And 8 Then strAttrib = strAttrib & "Volume, "

If intMask And 16 Then strAttrib = strAttrib & "Directory, "

If intMask And 32 Then strAttrib = strAttrib & "Archive, "

If intMask And 64 Then strAttrib = strAttrib & "Alias, "

If intMask And 2048 Then strAttrib = strAttrib & "Compressed, "

funAttrib = strAttrib

End Function

148 Part II Basic Windows Administration
More Info User defined functions are a great way to write pieces of code that you can
copy and paste into other scripts. In the previously mentioned funAttrib function, the function
translates the value of the file attributes. This is something that VBScript does not know how to
do. The function is saved as a file and placed in a directory that makes it easy to find
(\My Documents\Microsoft Press\VBScriptSBS\Utilities). The variable strAttrib is declared inside
the function and is only used within the function. This makes the function self-contained. The
result of the Anding (stored in the strAttrib variable) is assigned to the value of the function
name for use within the main body of the script.

Setting File Attributes

You have to assign a numeric value to the Attribute property to set the file attributes for a file.
This can be as simple as setting the Attribute property of the file to be equal to an integer
value, as seen below:

objFile.Attributes = intAttrib

In the SetFileAttributes.vbs script, we first create an instance of the file system object and set
it equal to the variable objFSO, as we have done in other scripts. We next return a file object by
using the GetFile method from the file system object. Once we have a file object, we query the
Attributes property, use the funAttrib function to parse the value, and print it out. Next we
enter the subSetAttrib subroutine, where we assign the desired value for the attribute to the
file. Once we have done that, we once again use the funAttrib function to translate the new
value.

SetFileAttributes.vbs
Option Explicit

On Error Resume Next

Dim objFSO 'the file system object

Dim objFile 'the file object

Dim strTarget 'path to target file

Dim intAttrib 'desired file attribute combination

strTarget = "C:\fso\test.txt"

intAttrib = 0

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFile = objFSO.GetFile(strTarget)

WScript.Echo "The file is: " & strTarget

WScript.Echo "OLD bitmap number is: " & objFile.Attributes & _

" " & funAttrib(objFile.attributes) & vbNewLine

subSetAttrib

' *** subs and functions below *****

Function funAttrib(intMask)

Dim strAttrib

If IntMask = 0 Then strAttrib = "No attributes"

Chapter 6 Working with the File System 149
If intMask And 1 Then strAttrib = strAttrib & "Read Only, "

If intMask And 2 Then strAttrib = strAttrib & "Hidden, "

If intMask And 4 Then strAttrib = strAttrib & "System, "

If intMask And 8 Then strAttrib = strAttrib & "Volume, "

If intMask And 16 Then strAttrib = strAttrib & "Directory, "

If intMask And 32 Then strAttrib = strAttrib & "Archive, "

If intMask And 64 Then strAttrib = strAttrib & "Alias, "

If intMask And 2048 Then strAttrib = strAttrib & "Compressed, "

funAttrib = strAttrib

End Function

Sub subSetAttrib

objFile.Attributes = intAttrib

WScript.Echo "The new attibutes are: " & funAttrib(objFile.Attributes)

End Sub

Creating Files
There are literally thousands of times when a network administrator needs to create a file. The
most common occurrence is when output needs to be captured from a command prompt or
from the running of a script. By the time you finish this chapter, you’ll have a section of code
that you can reuse again and again. Once you know how to create files, you can use this code
section instead of the WScript.Echo command to direct output to either the command prompt
or a dialog box. (Later on, in Chapter 14, “Configuring Networking Components,” you’ll learn
how to automatically invoke Notepad.exe to facilitate reading of the output.) What is involved
in creating a file? The following “Just the Steps” section explains the process at a high level.

Just the Steps To create a file

1. Use CreateObject to create an instance of FileSystemObject.

2. Use the CreateTextFile method.

3. Include the full path and the name of the desired file.

As you can see from the preceding steps, the creation of a text file via VBScript is a very easy
and straightforward process. In fact, it can be accomplished with just two lines of code, as
seen in the listing for CreateTextFile.vbs.

CreateTextFile.vbs
Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFolder = objFSO.CreateTextFile("C:\FSO.txt")

Writing to a Text File

Creating text files using VBScript is nice but rather useless unless you can also add informa­
tion to them. Writing information to a text file gives you a way to save information. In addi­

150 Part II Basic Windows Administration
tion, it’s a good way to create a log file to track the progress of various automated
administrative tasks. You use the WriteLine method to write to a text file.

Just the Steps To write to a text file

1. Create an instance of FileSystemObject.

2. Use the appropriate parameter to indicate that you are going to either overwrite the file
(2) or append data to the file (8).

3. Use either the Write, WriteLine, or WriteBlankLines method to write to the file.

4. Close the text file.

Determining the Best Way to Write to a File

There are actually three different ways you can write to files. These methods are described in
Table 6-4.

Table 6-4 Methods used to write to files

Method Use

Write	 Writes to the file without appending the carriage return. (With the
carriage return, you might recall, the insertion point is moved to the
beginning of the next line.)

WriteLine Writes to the file and includes a carriage return and a line feed at the
end of the line.

WriteBlankLines(n) Writes blank lines to the file. The placeholder (n) specifies the number
of lines to write.

Overwriting a File

You use the constant ForWriting in conjunction with the Write method to overwrite a file. I use
this when I want to track the progress of an operation in a log file. By looking in the file, I can
see when the operation last ran, as illustrated in the BasicLog.vbs script. The Header section
of this script is left out below for clarity, however BasicLog.vbs does contain this information.

BasicLog.vbs
LogFile = "C:\fso\fso.txt"

Const ForWriting = 2

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

objFile.WriteLine "beginning process " & Now

objFile.WriteLine "working on process " & Now

objFile.WriteLine "Process completed at " & Now

objFile.Close

The script begins by defining the variable LogFile and assigning a text file to it. You do this to
make it easier to reuse the code and to make it easier to change the file you want to write to.

Chapter 6 Working with the File System 151
You then define the constant ForWriting and set it equal to 2, which is the number that tells
VBScript to overwrite any data found in the text file that might have been previously written to.

Tip ForReading, ForWriting, ForAppending are listed in the VBScript documentation as con­
stants, but they are not intrinisic constants for VBScript. Convention (and readability) dictates
using these constant names, but they are always user defined constants.

The variable objFSO is then set to be equal to the object returned by the CreateObject com­
mand that is used to create an instance of FileSystemObject. In the next line, the variable objFile
contains textStreamObject that is created when you use the OpenTextFile method. All the pre­
ceding steps are overhead for the Write operation. Once you have the ForWriting handle to the
log file, you have completed the Reference information section of the script. You’re now ready
for the Output information section, which is the section of the script that actually does work.
In the Output section, you use the WriteLine method.

Quick Check

Q. What are three ways to write to files?

A. You can write to files using the Write, WriteLine, and WriteBlankLines methods.

Q. If you want to overwrite a file, what do you need to do?

A. You need to specify the constant ForWriting.

In a logging situation, the dauntless network administrator is looking for two salient pieces of
information: what operation completed and when it completed. Armed with this information,
a network administrator can judge the success or failure of various procedures. In the
BasicLog.vbs script, you can easily glean this information by incorporating the WriteLine
method inside the For…Next loop of any working script. This is exactly the type of thing I do
in a lab to estimate how long a certain script will take to complete. If, for instance, a certain
Windows Management Instrumentation (WMI) script needs five minutes to complete, you
might not want to launch it on 100 servers at the same time because doing so could have an
adverse impact on the computing environment.

Using Temporary File Names
One of the problems when logging to a file is the issue of names. Just how many log-
file.txt files can you have in the same directory—and what is the most obvious name for
a log file? You begin to see the point. Often, we do not really want to perform “actual”
logging; rather, we want a better output format. Notepad is almost as powerful a log file
reader as it is a script editor. The solution is to use a temporary file name that is ran­
domly created by the file system object. Use the following procedure for doing this.

152 Part II Basic Windows Administration
Creating a temporary file in a temporary directory

1. Create a new script based on the FSOTemplate.vbs script contained in the
\My Documents\Microsoft Press\VBScriptSBS\Templates directory. Save the new
script as YourNameCreateTempFileNameAndOpenInNotepad.vbs.

2. Delete the four variables you will not use in this script: objFolder, strFile, strFolder,
and colFiles.

3. Delete the line that defines the constants.

4. Declare two new variables: strPath and objShell.

5. Assign objShell to hold the wshShell object that comes back from using the Cre­
ateObject command to create WScript.shell. This is seen below:

Set objShell = CreateObject("WScript.shell")

6. Use strPath to hold the path that comes back from the FunTempFile function. Make
sure you pass the objFSO variable to the function because it contains an instance of
the file system object (a file system object is required for the FunTempFile function
to work properly). This code is seen below, and must be placed after the CreateOb­
ject line from step 5.

strPath = FunTempFile(objFSO)

7. Open the FunTempFile.vbs script (\My Documents\Microsoft Press
\VBScriptSBS\Utilities) in Notepad or your favorite script editor. Copy the func­
tion that is defined at the bottom of this script. It looks like the following:

Function FunTempFile(objFSO)

Dim objfolder

Dim strName

Const TemporaryFolder = 2

Set objfolder = objfso.GetSpecialFolder(TemporaryFolder)

strName = objfso.GetTempName

strName = objfolder & "\" & strName

FunTempFile = strName

End Function

8. Use the CreateTextFile method from the file system object to create the text file that
is specified in the path statement created by the FunTempFile function. You can use
the Set objFile line of code that is remarked out in the file. The only revisions
required are to change OpenTextFile to CreateTextFile, and to change strFile to str-
Path.. This is seen below, and will be placed below the code from the previous step.

Set objFile = objFSO.CreateTextFile(strpath)

Chapter 6 Working with the File System 153
9. Use the Write method to write to the log file you just created. The code to do this
is detailed below:

objFile.Write("Writing to a temporary file ") & now

10. Use the Run command from the WScript.shell object to run Notepad and to open
the temporary file. Normally you could just use the Run method and pass it the
name of the text file. The problem is there is no file association between the tem­
porary file name and Notepad, so we need to specifically launch Notepad. This is
seen below:

objshell.Run("notepad " & strPath)

11. Save and run the script. It should produce a Notepad window with a message
about a temporary file. If it does not, then compare your results to the \My Docu­
ments\Microsoft Press\VBScriptSBS\ch06\CreateTempFileNameAndOpenIn-
Notepad.vbs script.

In the DisplayAdminTools_Logged.vbs file, you merge BasicLog.vbs with the Display
AdminTools.vbs file from Chapter 1. This script simply checks when the script begins and
when it ends. You could add an extra line of code to compute the run time of the script (if you
were so inclined). By consulting the log entries, you can estimate how long it will take to
obtain the desired information.

DisplayAdminTools_Logged.vbs
LogFile = "C:\fso\fso.txt"

Const ForWriting = 2

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

Set objshell = CreateObject("Shell.Application")

Set objNS = objshell.namespace(&h2f)

Set colItems = objNS.items

objFile.WriteLine "Process started at " & Now

For Each objItem In colItems

WScript.Echo objItem.name

Next

objFile.WriteLine "Process completed at " & Now

objFile.Close

Logging tool names

1.	 Open the DisplayAdminTools_Logged.vbs script (My Documents\Microsoft Press

\VBScriptSBS\ch06) in Notepad or a different script editor. Save the file as

YourNameListAdminTools_Logged.vbs.

2.	 On the first non-commented line of your script, add Option Explicit.

154 Part II Basic Windows Administration
Option Explicit

3.	 Under Option Explicit, add On Error Resume Next, but comment it out.

'On Error Resume Next

4.	 Declare the seven variables that are used in the DisplayAdminTools_Logged.vbs script.
Add comments indicating their use in the DisplayAdminTools_Logged.vbs script. Your
list will look like the following:

Dim objFSO 'the filesystemobject

Dim objFile 'file object

Dim LogFile 'path to log file

Dim objShell 'shell application object

Dim objNS 'special folder to connect to

Dim colItems 'collection of items in the folder

Dim objItem 'single file in the folder

5.	 Declare two more variables—strMSG and intNS—that will hold a standard message string
and the namespace special folder constant value in hexadecimal from Appendix E. Add
comments for these variables as well, as seen below:

Dim intNS 'shell special folder constant value

Dim strMSG 'the root message written to log

6.	 In the Reference section of the script, above LogFile, assign the string “Enumerating
Items: ” to the strMSG variable, as seen below:

strMSG = "Enumerating items: "

7.	 On the next line, assign the value &h2f to intNS.

intNS = &h2f 'hex value of 47 which is admin tools

Caution Make sure you do not enclose &h2f with quotation marks, because it would
turn this hexadecimal integer into a string and cause your script to fail.

8.	 Under the Set objFile = objFSO.OpenTextFile(LogFile, ForWriting) line, use the WriteLine
method to write a report header line to the text file. Include the current time stamp, the
intNS variable, and the strMSG variable. The line will look like the following:

objFile.WriteLine strMSG & " in folder " & intNS & _

" Started " & Now

9.	 Delete the old objFile.WriteLine "Process started at " & Now line.

10.	 Instead of just using WScript.Echo to list the file names, we want to write to our log file.
To do this, you will use the WriteLine method. It will go within the For Each…Next loop.
My line looks like the following:

objFile.WriteLine objItem.name

Chapter 6 Working with the File System 155
11.	 Edit the Process Completed line so that it uses strMSG. My line looks like the following:

objFile.WriteLine strMSG & "completed " & Now

12.	 Save and run the script. Open your log file, and you should see an output similar to the
one in Figure 6-4. If your log does not look similar, compare your script with \My Doc­
uments\Microsoft Press\VBScriptSBS\ch06\ListAdminTools_Logged.vbs.

Figure 6-4 Logged output from ListAdminTools_Logged.vbs

Log multiple special folders

1.	 Open ListAdminTools_Logged.vbs in Notepad or your favorite script editor and save it
as YourName_ListMultipleSpecialFolders_logged.vbs.

2.	 Declare a new variable aryNS:

Dim aryNS

3.	 In the Reference section of the script, assign some special folders to the array. Make sure
you use the Array function to turn aryNS into a static array.

aryNS = array(&ha,&h20,&h6) 'special folder values See Appendix E

4.	 Delete the line containing intNS from the Reference section, because we will use this
variable to hold an individual namespace from the array.

5.	 After you have used the OpenTextFile method and assigned the file object to objFile, use
For Each…Next to walk through the array. Use intNS to hold the individual namespace
value, as seen below:

For Each intNS In aryNS

6.	 On the line after you write to the log file that the script is completed, close out the For
Each…Next loop with the word Next.

7.	 Save and run your script. It should run fine. If not, compare it to

ListAdminTools_Logged.vbs.

8.	 Copy the subOpenLogFile subroutine from SubOpenLog.vbs in the Utilities folder. Paste
it at the bottom of your script.

156 Part II Basic Windows Administration
9.	 After the final Next you entered to close out the For Each…Next loop, call your subOpen-
LogFile subroutine.

10. Save and run the script. It should now open the log file for you automatically.

Verifying a File Exists
Although the approach to file management just discussed might seem easy, in many environ­
ments, you need to take a more critical approach. In other words, you must first determine
whether the file exists, and if it does, you want to append to the file (not overwrite it); if it does
not exist, then you want to create it. This ensures that your log file is present on each server
running your script.

To check for the existence of a particular file, you use the FileExists method of FileSystemObject.
Although it’s true that this method complicates the script a little, it’s also true that by checking
for and creating a particular file as required, you add an order of magnitude to the flexibility of
the script. Without further ado, take a look at the VerifyFileExists.vbs script.

VerifyFileExists.vbs
LogFile = "C:\FSO\fso.txt"

Const ForAppending = 8

Set objFSO = CreateObject("Scripting.FileSystemObject")

If objFSO.FileExists(LogFile) Then

Set objFile = objFSO.OpenTextFile(LogFile, ForAppending)

objFile.Write "appending " & Now

Else

Set objFile = objFSO.CreateTextFile(LogFile)

objFile.write "writing to new file " & now

End If

Notice that this script uses code that is very similar to the BasicLog.vbs script presented ear­
lier in this chapter in that you define your LogFile and create FileSystemObject via the CreateOb­
ject command. However, that is where the most obvious similarity ends.

In this script, you define two constants, ForWriting and ForAppending, because you might want
to perform one of these operations depending on whether the log file exists. After you create
FileSystemObject, you move into an If…Then…Else loop. Notice the way in which the FileExists
construct is implemented:

If objFSO.FileExists(LogFile) Then

To look for the existence of a file, you use the handle to FileSystemObject that you obtained and
call the FileExists method of that object. The only required parameter is the name of the file for
which you want to test existence. In this case, it is the file you set equal to the variable called
LogFile.

Chapter 6 Working with the File System 157
If the file does exist, you use the OpenTextFile method of FileSystemObject and specify LogFile,
and then add to the file by using the ForAppending constant. Remember, when you open a file
by using the OpenTextFile command, you have to specify whether you are opening it in read-
only mode, appending mode, or overwriting mode. After you specify the manner in which you
are opening the file, you then use the Write command to write a line to the log file. The Now
function simply writes out the current date and time in a long format.

If the file is not present, you want to create the log file. This is done by using the CreateTextFile
method of FileSystemObject, as shown in the following code:

Set objFile = objFSO.CreateTextFile(LogFile)

Then you use the WRITE command to write out to the file. In reality, you could have specified
ForAppending and appended to the new file, but by using ForWriting, you make it a little easier
to know what is actually contained in the file.

Tip When creating a file, it is not necessary to follow the CreateTextFile method with the
OpenTextFile method because VBScript is smart enough to figure you want to write to the file
you just created, and it automatically opens the file for you. If you are not going to be using
the file, and depending on the configuration of your script, you may want to use the Close
method.

Searching ini file for misconfiguration

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates\FSOTemplate.vbs
script in Notepad or your favorite script editor. Save it as YourNameLookFor3GB.vbs.

2.	 Delete objFolder, strFolder, and colFiles from the Header section of the script, because
they will not be used.

3.	 Declare a variable to hold the search string. Call it strSearch, as seen below:

Dim strSearch

4.	 Declare an additional variable to hold the entire text of the TestBoot.ini file. Call it

strText.

Dim strText

5.	 Delete the line of constants from the Reference section of the script.

6.	 In the Reference section of your script, assign the path to the TestBoot.ini file to the
strFile variable. You can uncomment the strFile line and assign the appropriate path. It
will look something like:

strFile = "C:\fso\testBoot.ini"

158 Part II Basic Windows Administration
7.	 Assign the value "/3GB" to the strSearch variable. It is not critical where
you put this, but I put it under the strFile line to keep them together. It will look like the
following:

strSearch = "/3GB"

8.	 Delete the strFolder line in the Reference section, because we will not be using it.

9.	 Uncomment the Set objFile line. It will need no modification.

10.	 Delete the Set objFolder and Set colFiles lines, because you will not use them.

11.	 Use the ReadAll method from objFile and assign the text that comes back to the strText
variable. It will look like the following:

strText = objFile.ReadAll

12.	 Go to the Utilities folder and copy the funLookup function from the FunLookup.vbs file.
Put it at the bottom of your script. The funLookup function takes two input parameters
and looks like the code below. No changes are required.

Function funLookup(strText,strSearch)

Const blnInsensitive = 1

If InStr (1,strText, strSearch,blnInsensitive) Then

funLookup = strSearch & " was found"

Else

funLookup = strSearch & " was not found"

End If

End Function

13.	 Use the Echo command to print out the results of the search. Because the funLookup
function takes two parameters, we will need to supply them when we call the function in
the Echo command, as seen below. This line of code is placed below the line that uses
the ReadAll method.

WScript.Echo funLookup(strText,strSearch)

14.	 Save and run the script. It should let you know that it found the /3GB switch in the Text-
Boot.ini file. If this is not the case, compare your script with the \My Docu­
ments\Microsoft Press\VBScriptSBS\ch06\LookFor3GB.vbs script.

Tip A good way to add functionality to an existing script is to add it within a subroutine. In
this way, you have the option to “turn on” or “turn off” the functionality introduced within this
set of code. If you mix the new code with the existing code, without keeping it separate, then
your new functionality has to be complete the first time you run the script. You risk breaking
your script when you do this. In the “Using SkipLine to work with malformed ini files” section,
we illustrate adding new code in the form of a subroutine.

Chapter 6 Working with the File System 159
Using SkipLine to work with malformed ini files

1.	 Open the LookFor3GB.vbs file in Notepad or your script editor of choice and save it as
YourNameSkipLineToLookFor3GB.vbs.

2.	 At the bottom of the script, under the funLookup function, add a new subroutine and call
it subLook. At the same time, end the sub on a separate line. Your code will look like the
following:

Sub subLook

End sub

3.	 In the subroutine, declare a variable called strLine. This variable will hold the results of
using the funLookup function.

Dim strLine

4.	 The beginning of a normal boot.ini file begins with square brackets. Use the existing
strSearch variable and assign the square bracket to it. This will be your Reference section
in this subroutine.

strSearch = "["

5.	 Use the OpenTextFile method to open txtFile. Assign it to the variable objFile.

Set objFile = objFSO.OpenTextFile(strFile)

6.	 Use Do Until to loop through the text file until you get to the end of the text stream.
While you are doing this, read a line of text and assign it to the variable strText, as seen
below:

Do Until objFile.AtEndOfStream

strText = objFile.ReadLine

7.	 Use the funLookup function to examine the line of text. Pass it two parameters: strText
and strSearch. Hold the results that come back from the function in the variable strLine.
You code will look like the following:

strLine = funLookup(strText,strSearch)

8.	 Use InStr to look inside strLine for the word not. If it finds it, then get the line number
and subtract one from that value. Print out a message with the line number by using the
Line property. My code to do this looks like the following:

If InStr (strLine, "not") Then

intLine = (objFile.Line -1)

WScript.Echo intLine & _

" not at the beginning of the ini"

160 Part II Basic Windows Administration
9.	 If the value is found, then we want to capture the line number and subtract one from it.
We will save this number in the variable intLine. We then will print out a message that
indicates we have found the beginning of the ini file. To do this, we will need to refer to
the intLine variable outside the subroutine. We need to DIM the intLine in the Header
section of the main script. We will need to close the file and then exit the subroutine.

Else

intLine = (objFile.Line -1)

WScript.Echo intLine & _

" is the beginning of the ini"

objFile.Close

Exit Sub

10. We then need to close out the Do Until loop and the If…Then…Else statements.

End If

Loop

11.	 Save and run your script. At this point, it should work just like it did before, because we
have not yet called the subroutine.

12.	 Outside of the subroutine, under the line of code where you create the file system object
and above the line that uses the OpenTextFile method, use WScript.Echo to print out a
message saying that you are opening the file for a second time. My code looks like the
following:

WScript.Echo "opening the file a second time ..."

13.	 Delete the strText = objFile.ReadAll line. Replace it with a Do Until…Loop statement. You
will loop until you get to the end of the text stream. This is seen below:

Do Until objFile.AtEndOfStream

14.	 Use the Line property of objFile and see if the current line is less than the line that was
returned by the subroutine you just added to the script. If it is, then we want to use the
SkipLine method of objFile to go to the next line. This is seen in the code below.

If objFile.Line < intLine Then

objFile.SkipLine

15.	 If, however, the Line property of objFile is the same as that returned by the subroutine,
then you will want to read the line and print out a friendly message. My code to do this
looks like the following:

ElseIf objFile.Line = intLine Then

WScript.Echo "The beginning of the ini file is: "_

& vbNewLine & Space(5)& objFile.readLine

Chapter 6 Working with the File System 161
16.	 If the line number is bigger, then you will print out a message saying that the script is
over and call the Quit method. This is seen below:

Else

WScript.Echo "the script is over"

WScript.Quit

17. Now you will end the If…Then…Else statement and the Do Until…Loop statement.

End If

Loop

18.	 On the line before the one that prints out the message saying that you are reading the
file for a second time, call the subroutine by using the word subLook.

19.	 Save and run your script. If your output does not look like the following, then compare
it with \My Documents\Microsoft Press\VBScriptSBS\ch06\
SkipLineToLookFor3GB.vbs.

1 not at the beginning of the ini

2 not at the beginning of the ini

3 not at the beginning of the ini

4 not at the beginning of the ini

5 not at the beginning of the ini

6 is the beginning of the ini

opening the file a second time ...

The beginning of the ini file is:

[boot loader]

the script is over

Creating Files Step-by-Step Exercises
In this section, you will practice creating files. The result of this practice is essentially a code
block that you can employ in other scripts to write information to a file instead of merely echo­
ing it to the screen.

1.	 Open Notepad or the script editor of your choice. Save a blank file as YourNameStep-
ByStep.vbs.

2.	 Use Option Explicit and declare the following variables: LogFile, objFSO, and objFile.

3.	 Create an assignment for the variable LogFile that will hold the name and path of your
log file. The code will look like the following:

LogFile = "C:\FSO\fso.txt"

4.	 Open Windows Explorer and ensure a folder called FSO and a text file called Fso.txt
exist on your C drive.

5.	 Create a constant called ForWriting and set it equal to 2.

162 Part II Basic Windows Administration
6.	 Use CreateObject to create an instance of the FileSystemObject. Set it equal to a variable
called objFSO. Your code will look like the following:

Set objFSO = CreateObject("Scripting.FileSystemObject")

7.	 Use the OpenTextFile method of objFSO to open your log file for writing. Set it equal to a
variable called objFile. Your code will look like the following:

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

8.	 Use the WriteLine method and the Now function to write a line to a text file called Fso.txt
that indicates you are beginning your logging. The code will look like the following:

objFile.WriteLine "beginning logging " & Now

9.	 Use the WriteLine method and the Now function to write a line to the text file called
Fso.txt that indicates your process is continuing. Your code will look similar to this line:

objFile.WriteLine "working on process " & Now

10.	 Use the WriteLine method and the Now function to indicate the logging is complete.
Your code will look like the following:

objFile.WriteLine "Logging completed at " & Now

11.	 Use the Close command to close out your log file. The code will look like the following:

objFile.Close

12.	 Add comments to each of the variables (LogFile, objFSO, and objFile) that were added in
step 2 to indicate their use in the script. Here is an example:

Dim LogFile 'holds path to the log file

Dim objFSO 'holds connection to the FileSystemObject

Dim objFile 'used by OpenTextFile command to allow writing to file

13. Do not delete the folder or the file, because you will use them in the next lab.

One Step Further: Creating a Log File
In this section, you are going to check for the existence of the log file by modifying the script
created in the “Creating Files” step-by-step exercise. If the file exists, you will overwrite it. If it
does not exist, you will create it.

1.	 Open Notepad or the script editor of your choice.

2.	 Use Option Explicit and declare the following variables: LogFile, objFSO, and objFile.

3.	 Create an assignment for the variable LogFile that will hold the name and path of your
log file. The code will look like the following:

LogFile = "C:\FSO\fso.txt"

4.	 Open Windows Explorer and ensure a folder called FSO and a text file called Fso.txt
exist on your C drive. (Skip this step if you did this in the step-by-step exercise earlier.)

Chapter 6 Working with the File System 163
5.	 Create a constant called ForWriting and set it equal to 2.

6.	 Create a constant called ForAppending and set it equal to 8.

7.	 Use CreateObject to create an instance of FileSystemObject. Set it equal to a variable called
objFSO. Your code will look the following:

Set objFSO = CreateObject("Scripting.FileSystemObject")

8.	 Use an If…Then…Else loop to implement the FileExists method of FileSystemObject. In
this loop, test for the existence of LogFile. If the log file exists, append to it a line of text
that indicates you appended to it and use the Now function so that you know when it
ran. Your code will look like the following:

If objFSO.FileExists(LogFile) Then

Set objFile = objFSO.OpenTextFile(LogFile, ForAppending)

objFile.Write "appending " & Now

Else

9.	 If the file does not exist, use the CreateTextFile command to create the log file. Assign the
new file to the variable objFile. Your code will look like the following:

Set objFile = objFSO.CreateTextFile(LogFile)

10.	 Use the Close method to close the file you just created. The code will look like the
following:

objFile.Close

11.	 Use the OpenTextFile method to open the LogFile variable for writing. Set this equal to
objFile. The following code illustrates this:

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

12.	 Use the Write method of objFile to write to the LogFile variable. Use the Now function to
write the date and time this occurred. Use the following code as an example:

objFile.write "writing to new file " & Now

13.	 End the If statement. Use End If to do this.

14.	 Close the log file. Use objFile.Close for this purpose. Run your script. If you have
problems, compare it with \My Documents\Microsoft Press\VBScriptSBS\ch06\
OneStepFurther\osfLogIfExistA.vbs in the OneStepFurther folder.

15.	 Delete lines created in steps 10 and 11.

16.	 Save and run the script. Notice you do not need to close the file before writing—VBScript
knows if you created a file to which you want to write. If you have problems when you
run this script, then compare it with \My Documents\Microsoft
Press\VBScriptSBS\ch06\OneStepFurther\osfLogIfExistB.vbs.

164 Part II Basic Windows Administration
Chapter 6 Quick Reference

To Do This

Write to a file Choose either the Write, WriteLine, or
WriteBlankLines methods

Include a carriage return and a line feed when Use the WriteLine method
you write to a line

Append to a line when you write to it Use the Write method

Verify the existence of a file prior to writing to it Use the FileExists method

Read file attributes Use the Attribute property of a File object

Obtain a list of all files in a folder Use the Files method once you have connected
to a folder

Connect to a folder Use the GetFolder method

Work with a single file from a collection of files Iterate through the collection of files by using a
For Each…Next loop

Chapter 7

Working with Folders

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the fol­
lowing concepts from earlier chapters:

■ Utilizing the FileSystemObject

■ Using the For Each...Next statement

■ Implementing constants

■ Applying the Select Case statement

After completing this chapter, you will be able to:

■ Use the FileSystemObject class to create folders

■ Use the FileSystemObject class to list folders

■ Use the FileSystemObject class to delete folders

■ Use the FileSystemObject class to verify the existence of folders

Working with Folders
In your day-to-day life as a network administrator, you must create folders hundreds of times
if for no other reason than to hold numerous files. In my life as a consultant, I am constantly
creating folders that hold project data for my clients. During the year I wrote this book, I had
to create more than two dozen folders to organize the support materials, labs, and scripts so
that I could keep track of them and maintain versioning information.

Just the Steps To create a folder

1. Create a file system object by using CreateObject.

2. Use the CreateFolder command to create the folder.

Creating the Basic Folder

Creating your basic folder requires only two lines of code. The first line of code creates an
instance of the FileSystemObject class by using the CreateObject method. The second line of
165

166 Part II Basic Windows Administration
code sets the handle returned by CreateObject to a variable, which is used to call the Create-
Folder method. The only parameters required by CreateFolder are the path and name of the
folder to be created. This process is illustrated in the CreateBasicFolder.vbs script. For simplic­
ity’s sake, I am omitting the standard Header section.

CreateBasicFolder.vbs
Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFolder = objFSO.CreateFolder("c:\fso1")

Creating Multiple Folders

Suppose you need to create some folders for a number of temporary users. You decide to call
the users tempUser1 through tempUser10. It would actually take a while to create these fold­
ers for the users, if one had to use the graphical user interface (GUI) tools and perform the
operation by hand. However, by making some changes to the CreateBasicFolder.vbs script,
you can easily accomplish this task. The revised script, called CreateMultiFolders.vbs, follows.

CreateMultiFolders.vbs
Option Explicit

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

Dim objSHell

Dim myDocs

Set objSHell = CreateObject("wscript.shell")

myDocs = objSHell.SpecialFolders("mydocuments")

numFolders = 10

folderPath = myDocs & "\"

folderPrefix = "TempUser"

For i = 1 To numFolders

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFolder = objFSO.CreateFolder(folderPath & folderPreFix & i)

Next

WScript.Echo(i - 1 & " folders created")

Caution FSO will not create a folder unless its parent folder already exists. Thus, an attempt
to create C:\tmp\tmpusers\tmpuser1 will fail unless C:\tmp\tmpusers already exists.

Chapter 7 Working with Folders 167
Header Information

The Header information section of CreateMultiFolder.vbs begins with Option Explicit to
ensure that no variables are misspelled or mistakenly introduced. You then declare six vari­
ables that are used in the script. The first variable, numFolders, holds the number of folders
you want to create. The next variable, folderPath, points to the location in which you will create
the folders. In this instance, you are going to create 10 folders off the root of the C drive, but
these values aren’t assigned until the Reference section. The next variable is folderPrefix. In
this script, you assign a word or a set of characters that Microsoft Visual Basic, Scripting Edi­
tion (VBScript) will use to begin the creation of the folders. The beauty of this arrangement is
that you can later change the prefix easily. The variable objFSO holds the connection to File-
SystemObject, and objFolder holds the handle to the CreateFolder command. The last variable
declared is i, which is used simply as a counter.

As you can see, we did not use On Error Resume Next. When actually modifying or moving
data, it is a good idea to allow errors to cause the script to fail so that data is not harmed if
something goes wrong.

Reference Information

The Reference information section of the script assigns values to some of the variables
declared in the Header information section. The variable numFolders holds the number of
folders you want to create. The variable folderPath is used by the CreateFolder command when
it comes time to create the folders. The variable folderPrefix is set to TempUser, which is the
folder prefix you will use for each folder that gets created.

Worker Information

On the first line of the Worker information section, we have a For…Next loop. In this section,
we use the counter i to keep track of how many folders you want to create. The number of fold­
ers created is stored in the value numFolders. At any given time, you have created i number of
folders. This counting continues for each number between 1 and numFolders (inclusive).

On the second line of the Worker information section of the script, you use the CreateObject
command to create an instance of the FileSystemObject. This exact line was used in all the
scripts in Chapter 6, “Working with the File System.” In every situation in which you must cre­
ate an instance of the FileSystemObject class, the syntax will be exactly the same:
CreateObject("Scripting.FileSystemObject"). In most of your scripts, you’ll set the handle to
FileSystemObject equal to objFSO (although the variable can be named anything).

The third line of the Worker information section of the CreateMultiFolder.vbs script is used to
actually create the folders. Note the syntax of this command:

CreateFolder (folderPath)

168 Part II Basic Windows Administration
In the script, you concatenate folderPath with folderPrefix and a counter number. This enables
you to reuse the script for a multitude of purposes. In our example, you’ll create 10 folders,
named TempUser1 through TempUser10. You could just as easily change folderPrefix to ch
and then create folders labeled ch1 through ch10. In a school setting, you might want to
change folderPrefix to student, and thus create folders labeled student1 through student10.

Best Practices In the CreateMultiFolders.vbs script, we have the CreateObject
(”Scripting.FileSystemObject”) code inside the For…Next loop. On my particular laptop, this
code executes faster than if it were outside the For…Next loop. In the “Discovering the most
efficient code” procedure (coming up next), we outline a method to test your machine and see
the best place for this code.

If you change the value of i, you can create 10,000 or more folders just as easily as you can cre­
ate 10. As you can see, it is really easy to create folders using the FileSystemObject class. It can
also shave hours off of lengthy setup procedures. The best thing, however, is that once the
script is written and tested, you get repeatable results. Creating folders is done right every sin­
gle time. The completed Worker section is seen below.

For i = 1 To numFolders

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objFolder = objFSO.CreateFolder(folderPath & folderPreFix & i)

Next

Output Information

After you create the folders, you want confirmation that the task completed successfully. In
this script, you use WScript.Echo to let you know that the script completed successfully. The
reason you need to use i - 1 in our count is that the value of i gets incremented prior to the
Echo command. This is shown in the following code:

WScript.Echo(i - 1 & " folders created")

Quick Check

Q. What is required to create a folder?

A. A connection to FileSystemObject is required.

Q. Which method is used to create a folder?

A. The CreateFolder method is used to create a folder.

Note If you ran the CreateMultiFolders.vbs script, you now have 10 temp folders in that
folder. In the next procedure, we are going to create 100 temp folders, so you will need to
delete the folders created in the previous script. Make sure you are careful not to delete any of
your documents while deleting the folders.

Chapter 7 Working with Folders 169
Discovering the most efficient code

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch07\CreateMultiFolders.vbs

in Microsoft Notepad or your favorite script editor and save the script as

YourNameEfficientFolder.vbs.

2.	 In the Header section of the script, declare three new variables to be used to time the
script execution: startTime, endTime, and totalTime. This is seen here:

Dim startTime, endTime, totalTime 'used for timer function

3.	 On the next line, use the Timer function to capture the first time stamp for your script.
You assign the value from the Timer function to the startTime variable, as seen here:

startTime = Timer

4.	 Change the value of numFolders from 10 to 100. This will enable the script to run for a
longer period of time and provide you with a better opportunity to monitor the perfor­
mance of the script.

numFolders = 100

5.	 After the For…Next loop, assign the Timer function to the endTime variable to provide an
ending time stamp. This will go just before the WScript.Echo line at the bottom of your
script.

endTime = timer

6.	 To figure out how long the script ran, subtract startTime from endTime and assign the
resulting number to totalTime, as seen here:

totalTime = endTime - startTime

7.	 After your WScript.Echo line at the bottom of your script, print out the resulting value.
My output line looks like the following:

WScript.Echo "It took " & totalTime &" seconds"

8.	 Save and run your script. Remember how long it takes for your script to run.

9.	 Open up Microsoft Windows Explorer and delete the 100 tempuser folders that were
created.

10.	 Move the create FileSystemObject line from inside the For…Next loop to the line above the
For…Next command. This will keep the script from creating 100 different FileSystemOb­
ject objects. This completed section of code will look like the following:

Set objFSO = CreateObject("Scripting.FileSystemObject")

For i = 1 To numFolders

Set objFolder = objFSO.CreateFolder(folderPath & folderPrefix & i)

Next

170 Part II Basic Windows Administration
11.	 Save and run the script. Compare how long it takes to run this time, with how long it
took to run earlier.

12.	 Based upon this test, does it make much difference where the CreateObject line is
placed? (On my laptop, the script actually runs faster when it creates the file system
object 100 times. It seems VBScript is more efficient at creating objects than re-using
objects (at least with my laptop). Your results may differ.

13.	 If your script does not run as expected, then compare your script with the Efficient-
Folder.vbs script from the Chapter 7 folder.

Logging test results

1.	 Open the EfficientFolder.vbs script in Notepad or some other script editor and save the
file as YourNameEfficientFolderLogging.vbs.

2.	 At the very bottom of your script, define a subroutine called subLogging. Make sure you
also end the subroutine. Your code will look like the following:

Sub subLogging

End sub

3.	 Inside the subroutine, you will want to define four variables that will be used for the log­
ging activities. One will be for a wshShell object so we can obtain the path to a special
folder. Two will be used for the log file, and one will be used to actually create the log file
itself. My Header section in the subroutine looks like the following:

Dim objShell 'wshShell object

Dim strDir 'directory for log file

Dim strFile 'path to the log file

Dim objFile 'the file object from OpenTextFile method

4.	 To obtain the path for the current desktop, we will use the wshShell object. To create this
object, we create an instance of WScript.shell, as seen below:

Set objShell = CreateObject("WScript.shell")

5.	 Use the strDir variable to hold the path to the desktop. To obtain this information, we
will use the specialFolders method from the WScript.shell object. This is seen below:

strDir = objshell.SpecialFolders("desktop")

6.	 To create the log file, we need to specify the name of the file as well as the path to the file.
This is seen in the following code:

strFile = strDir & "\myLog.txt"

7.	 In the Reference section of the subroutine, you may want to define some constants.
These do not increase functionality; however, they do make the code easier to read. I
used the following constants:

Chapter 7 Working with Folders 171
Const forAppending = 8

Const blnCreate = True 'will create the text file if it does not exist

Const intWindowPos = 4 'use most recent window position

Const blnWait = True 'script will wait until I manually close log file

8.	 The easiest way to create a log file is to use the OpenTextFile method of the FileSystemOb­
ject and specify an optional parameter to create the file if it does not exist. This is a Bool­
ean parameter, which we have assigned to the constant blnCreate. Because we are using
tstrFile for a log file, we will want to append to the file, not overwrite the file. This line
of code is seen below:

Set objfile = objFSO.OpenTextFile (strFile,ForAppending,blnCreate)

9.	 Once we have opened the text file, it is time to write to the file. You will want to use the
WriteLine method for your log file, because the entries will be easier to read if they are on
separate lines of the file. To do this, I used the following:

objFile.WriteLine("Running script" & VbCrLf & Now & " took " & totalTime)

10.	 Having written to the file, it is now time to open the file so it can easily be read. To do
this, we need to enclose the path to the file in quotation marks so we can use the Run
method from wshShell. You will need four quotation marks to embed quotation marks
inside quotation marks. This strange looking line of code is seen below:

strFile = """" & strFile & """"

11.	 Now you can use the Run method of the WScript.shell object to open the log file. This
relies upon the fact there is a file association between txt and Notepad.exe. Use the con­
stant intWindowPos to indicate where the program will appear, and the blnWait constant
to keep the script running until you exit Notepad.

objShell.run strFile,intWindowPos,blnWait

12.	 The completed subroutine looks like the following:

Sub subLogging 'logs the time the script was run, and how long it took to run

Dim objShell 'wshShell object

Dim strDir 'directory for log file.

Dim strFile 'path to the log file

Dim objFile 'the file object from OpenTextFile method

Set objShell = CreateObject("WScript.shell")

strDir = objShell.SpecialFolders("desktop")

strFile = strDir & "\myLog.txt"

Const forAppending = 8

Const blnCreate = True 'will create the text file if it does not exist

Const intWindowPos = 4 'use most recent window position

Const blnWait = True 'script will wait until I manually close log file.

Set objFile = objFSO.OpenTextFile (strFile,ForAppending,blnCreate)

objFile.WriteLine("Running script" & VbCrLf & Now & " took " & TotalTime)

172 Part II Basic Windows Administration
strFile = """" & strFile & """"

objShell.run strFile,intWindowPos,blnWait

End sub

13.	 Call the subroutine by placing the name of the subroutine after the line that uses
WScript.Echo to display the amount of time it takes to run the script. This will look like
the following:

subLogging

14.	 Save and run the script. It should open up Notepad with a line that indicates how long
it took to run the script. If it does not, then compare your script with the EfficientFold­
erLogging.vbs script from the Chapter 7 folder.

15.	 Run the script several times while moving the CreateObject command in or out of the
For…Next loop. Remember, you will need to delete the folders prior to each running of
the script.

Automatic Cleanup
One nice way to use the script for creating folders is to reuse it and modify it to delete folders.
The idea here is that when you use scripts to create folders and then use them to delete fold­
ers, you have basically enabled automatic cleanup after your operations are complete.

Just the Steps To delete a folder

1. Implement FileSystemObject by using CreateObject.

2. Use the DeleteFolder command to delete the folder.

Deleting a Folder

Deleting a folder requires a connection to FileSystemObject. Once the connection to
FileSystemObject is established, you use the DeleteFolder method to delete the folder. This is
illustrated in the following script, DeleteBasicFolder.vbs. Notice that the big difference
between creating a folder and deleting a folder is that the line in which the folder is deleted
does not begin with Set. Rather than use Set, you simply include objFSO with the DeleteFolder
method and then the path to the folder you will delete.

DeleteBasicFolder.vbs
Set objFSO = CreateObject("Scripting.FileSystemObject")

objFSO.DeleteFolder("c:\fso")

Chapter 7 Working with Folders 173
Deleting Multiple Folders

It is just as easy to delete multiple folders as a single folder because the syntax is the same:
Make a connection to FileSystemObject and then call the DeleteFolder method. In the Delete-
MultiFolders.vbs script that follows, to make the script clean up after itself, you have to make
only three changes to CreateMultiFolders.vbs. Imagine how easy it would be to run Create-
MultiFolders.vbs when your school year begins to create individualized student workspace—
and then when the school year ends, run DeleteMultiFolders.vbs with three minor modifica­
tions to reclaim the storage space used by students during the school year. What are the mod­
ifications? There are no modifications in either the Header information or the Reference
information section of the script. In the Worker information section of the script, you delete
Set objFolder = and then change CreateFolder to DeleteFolder. In the Output information section
of the script, you change folders created to read folders deleted.

DeleteMultiFolders.vbs
Option Explicit

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

numFolders = 10

folderPath = "C:\"

folderPrefix = "TempUser"

For i = 1 To numFolders

Set objFSO = CreateObject("Scripting.FileSystemObject")

objFSO.DeleteFolder(folderPath & folderPreFix & i)

Next

WScript.Echo(i - 1 & " folders deleted")

Quick Check

Q. To delete a folder, what two components are required?

A. You need a connection to FileSystemObject, and you need to use the DeleteFolder
method.

Q. What is a positive aspect of deleting folders programmatically?

A. A positive aspect of deleting folders programmatically is that you can do so by easily
modifying the script used to create the folders.

Q. What are two situations in which creating folders and deleting folders programmati­
cally would be useful?

A. Creating folders programmatically is useful for schools that need to create a lot of student
home folders at the beginning of the school year and then delete them at the end of the
year. The same technique is useful for companies when they bring in temporary workers.

174 Part II Basic Windows Administration
Automating cleanup

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch07\EfficientFolderLog­
ging.vbs script and save it as YourNameEfficientFolderLoggingDelete.vbs.

2.	 Create a new subroutine under the subLogging subroutine. Call it subDelete. Make sure
you close out the subroutine, as seen below:

Sub subDelete

End Sub

3.	 Copy everything from the DeleteMultiFolders.vbs script except the Option Explicit line.
Paste it into the subDelete subroutine, as seen below:

Sub subDelete

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

numFolders = 10

folderPath = "C:\"

folderPrefix = "TempUser"

For i = 1 To numFolders

Set objFSO = CreateObject("Scripting.FileSystemObject")

objFSO.DeleteFolder(folderPath & folderPreFix & i)

Next

WScript.Echo(i - 1 & " folders deleted")

End Sub

4.	 Change the numFolders variable from 10 to 100.

numFolders = 100

5.	 Call the subDelete subroutine from the last line of the subLogging subroutine.

6.	 Save and run your script. If it does not work, then compare it to the EfficientFolderLog­
gingDelete.vbs script.

Binding to Folders
To gain information about the properties or attributes of a folder, you must first bind to the
folder. Because the file system object represents folders as Component Object Model (COM)
objects, you must create a reference to them prior to connecting to them—that is, you must
bind to them. You already know that to create or delete a folder, you have to create an instance
of FileSystemObject. After you do that, you use the GetFolder method to connect to the folder.

Chapter 7 Working with Folders 175
Just the Steps To bind to a folder

1. Implement the FileSystemObject by using CreateObject.

2. Specify the path to the folder.

3. Use Set keyword to assign the path to a variable.

In the following script, you implement FileSystemObject by using CreateObject. Next, you use
the GetFolder method to bind to the folder called fso found in the C drive.

BindFolder.vbs
Set objFSO = CreateObject("Scripting.filesystemobject")

Set objFolder = objFSO.getfolder("c:\fso")

WScript.Echo("folder is bound")

Does the Folder Exist?

Binding to a folder in and of itself is rather boring, but what if the folder does not exist? If you
try to bind to a folder that does not exist, the script generates an error message, and your
script might fail. The “path not found” error can be prevented from occurring by using the
FolderExists method. In the CreateBasicFolder_checkFirst.vbs script, you check for the exist­
ence of a folder prior to creating a new one.

By incorporating the FolderExists method into the CreateBasicFolder vbs script to create new
folders, you gain the ability to delete the existing folder prior to creating a new one. One situ­
ation in which this ability would be useful would be when creating a folder for logging onto a
workstation. If a previous logging folder were found, that folder could be deleted to make
room for a new folder. If you don’t want to delete the folder, if that folder exists, you simply
omit the DeleteFolder command from the script and modify the message displayed to the user.
In other situations, the mere presence of a folder is all you need. If you create a folder called
RasErrors, when a user fails to make a remote connnection to the network, then the presence
of this folder could indicate that the user had a problem connecting remotely.

CreateBasicFolder_checkFirst.vbs
Set objFSO = CreateObject("Scripting.FileSystemObject")

If objFSO.FolderExists ("C:\fso1") Then

WScript.Echo("folder exists and will be deleted")

objFSO.DeleteFolder ("C:\fso1")

WScript.Echo("clean folder created")

Set objFolder = objFSO.CreateFolder("C:\fso1")

Else

WScript.Echo("folder does not exist and will be created")

Set objFolder = objFSO.CreateFolder("C:\fso1")

End if

176 Part II Basic Windows Administration
Copying Folders
Copying folders is a fundamental task in network administration. It is important for backups
and for ease of management. Often the suave network administrator consolidates files and
folders prior to backing them up. This allows for both a more accurate backup, and in many
instances a quicker backup. In many organizations, the so-called backup window is nearly
closed, and getting everything backed up during the time allotted is a constant struggle. Con­
solidating folders can help with that problem.

You use the CopyFolder method of FileSystemObject to copy folders. It is important to realize
that this method also copies subfolders (even empty ones). The syntax of the CopyFolder
method follows.

Command Required Required Optional

CopyFolder Source folder Destination folder overwrite

Tip Both the source folder and the destination folder can be specified as either a local path
or a Universal Naming Convention (UNC) path. The overwrite parameter is optional and will
overwrite the destination folder if it is set to True.

In the following script, you copy a folder called fso that resides on the C drive to a folder called
fso1 on the C drive. It is important to note that the folder does not need to exist in order for
the copy process to succeed.

CopyFolder.vbs
Set objFSO = CreateObject ("scripting.fileSystemObject")

objFSO.CopyFolder "c:\fso","C:\Myfso"

You can make the script a little easier to use by creating variables to hold both the source and
the destination folders. In the next script, CopyFolderExtended.vbs, you do exactly that. In
addition, you create a constant called overwriteFiles that you set to True. Note that in this next
script, the destination folder, called dFolder, is located on a network share. The CopyFolderEx­
tended.vbs script could be used by a network administrator to copy user data from the local
machine to a network drive for consolidated backup. One negative aspect of the CopyFolder
command is that it does not indicate that it is working or that it is done. To give yourself a little
bit more information, you use the Now command and WScript.Echo to indicate when the com­
mand begins. In addition, after the copy operation is complete, you display another message
that the copy ended and the time.

Caution Depending on how much data you have stored in your Documents and Settings
folder, the CopyFolderExtended.vbs script could result in a significant amount of data being
copied. Make sure you have sufficient disk space available prior to running the script below, or
choose a different folder.

Chapter 7 Working with Folders 177
CopyFolderExtended.vbs
Const OverWriteFiles = True

startTime = Timer

WScript.Echo " beginning copy ..."

strSource = "c:\Documents and Settings"

strDestination = "\\London\fileBU"

Set objFSO = CreateObject ("scripting.fileSystemObject")

objFSO.CopyFolder strSource, strDestination , OverWriteFiles

endTime = Timer

WScript.Echo "ending copy. It took: " & _

Round(endtime-startTime) & " seconds to copy"

Tip In the CopyFolderExtended.vbs script, the parentheses were left out when we called the
CopyFolder method. This is because parentheses are optional when supplying arguments to
methods. If you add them in, the script will still work.

Listing folder sizes

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\FSOTemplate.vbs in
Notepad or some other script editor. Save your file as YourNameListFolderSizes.vbs.

2.	 Delete two Dim statements that will not be used: strFile and colFiles.

3.	 Add two new variables: colFolders and strHeader. The completed Header section of the
script looks like the following:

Option Explicit

'On Error Resume Next

Dim objFSO 'the fileSystemObject

Dim objFolder 'folder object

Dim strFolder 'individual folder form collection

Dim colFolders 'collection of subFolders

Dim strHeader 'header used for reporting

4.	 In the Reference section of the script, add a constant called noDecimal and set it to 0. It
will be used in the formatNumber function. This is seen below:

Const noDecimal = 0

5.	 Assign a folder location to the strFolder variable. Use the line that is commented out in
the template to save typing. Mine looks like the following:

strFolder = "c:\windows"

6.	 Delete the Const forReading = 1, forWriting = 2, forAppending = 8 line.

7.	 Delete the three lines in the template that are for use with files. These are listed below:

'strFile = "c:\fso\fso.txt"

'Set objFile = objFSO.OpentextFile(strFile)

'Set colFiles = objFolder.files

8.	 Remove the comment from the Set objFolder = objFSO.GetFolder(strFolder) line.

178 Part II Basic Windows Administration
9.	 Assign the path property and the size property of the folder object to the strHeader vari­
able. Use vbTab to provide spacing between the two properties. Use the formatNumber
function to add commas to the number and to remove all trailing decimal positions. My
code to do this looks like the following:

strHeader = objFolder.Path & vbTab & formatNumber(objFolder.size,noDecimal)

10.	 Open the FunLine2.vbs script from the \My Documents\Microsoft Press\VBScriptSBS
\Utilities folder and copy the funLine function from that file. Paste it at the bottom of your
script. The funLine function looks like the following:

Function funLine(strIn)

funLine = Len(strIN)+1

funLine = strIN & VbCrLf & String(funLine,"=")

End Function

11.	 Use the funLine function to underline strHeader when you print it out using
WScript.Echo. The code to do this looks like the following:

WScript.Echo funLine(strHeader)

12.	 Create a collection of subfolders and assign it to the colFolders variable. This is seen here:

Set colFolders = objFolder.SubFolders

13.	 Use For…Each…Next to walk through the collection of subfolders. Use strFolder as the
counter variable. Print out the path and the formatted size of each folder. The code to do
this looks like the following:

For Each strFolder In colFolders

WScript.Echo strFolder.path, formatNumber(strFolder.size,noDecimal)

Next

14.	 Save and run your script. You should see a printout of a folder and subfolders.
If your code does not perform as expected, compare your script with
\My Documents\Microsoft Press\VBScriptSBS\ch07\ListFolderSizes.vbs.

Moving Folders
Copying folders is a very safe operation because nothing happens to the original data. Copy
operations are often used to present a consolidated view of data (such as copying log files) or
to create redundant data for backup purposes (as in the case of VBScript book manuscripts).
Moving folders, on the other hand, can be done to free up disk space, or can be done simply
because two copies of the data are neither required nor desired. If a copy operation fails halfway
through, you simply end up with an extra copy of half your data. If, on the other hand, a move
operation fails halfway through, to have even one complete set of information, you have to go to
the destination machine and move your data back. Because of this, with important data, I
always copy, verify, and then delete. For files I am not concerned about, I perform a move.

Chapter 7 Working with Folders 179
To perform a move operation, use the MoveFolder method of FileSystemObject. The next script
you look at, MoveFolder.vbs, illustrates the MoveFolder method. Unlike the CopyFolder
method, MoveFolder has only two parameters: the source and the destination. The overwrite
parameter, which enables overwriting an existing folder during a move operation, is not
implemented. It’s common to move folders between drives, but you can also use the
MoveFolder method to move folders on the same drive, and in effect, you get the ability to
rename a folder. This is required, as there is no rename folder method in the FileSystemObject.
In MoveFolder.vbs, you do exactly that. You begin with a source folder called c:\fso, and the
destination folder is c:\fso2.

MoveFolder.vbs
Set objFSO = CreateObject ("scripting.fileSystemObject")

objFSO.MoveFolder "c:\fso","c:\fso2"

Important If you run the MoveFolder.vbs script, your c:\fso folder becomes c:\fso2. It is
important to rename the c:\fso2 folder back to C:\fso because the following procedure relies
upon it being set to c:\fso.

Walking through the directory

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\BlankTemplate.vbs.
Save your script as YourNameRecursiveListOfFolders.vbs.

2.	 On the first line of your script that is not commented, add the words Option Explicit.

3.	 Declare two variables: strTarget and objFSO. The script to this point should look like the
following:

Option Explicit

'On Error Resume Next

Dim strTarget 'the place to begin recursive folder listing

Dim objFSO 'the file system object

4.	 In the Reference section of the script, use strTarget to point to a subfolder that does not
exist. I used the following folder:

strTarget = "c:\fso\mred"

5.	 On the next line, create an instance of the FileSystemObject and assign it to the objFSO
variable. It will look like the following:

Set objFSO = CreateObject("Scripting.FileSystemObject")

6.	 Go to the bottom of your script and create a subroutine called subCheck. Make sure you
go ahead and close it out as well by using End sub.

Sub subCheck

End sub

180 Part II Basic Windows Administration
7.	 Inside the subroutine, declare some variables that will be used for a msgBox function. I
used strTitle, strPrompt, and errRTN. These properties are illustrated in Figure 7-1.

Dim strPrompt 'msgBox prompt

Dim strTitle 'title of msgBox

Dim errRTN 'return code from the msgBox function

Figure 7-1 Message box title, prompt, and button

8.	 Build up a string to use for the prompt portion of the msgBox function. Include the name
of the directory and the fact it does not exist, and ask if the user wants to create the
folder. Capture the return from the function in the errRTN variable. My code to do this
looks like the following:

strPrompt = strTarget & " Does not exist." &_

vbNewLine & "Would you like to Create it?"

9.	 Build up a string to use for the title of the message box. Include the name of the folder
and identify that it does not exist.

strTitle = strTarget & " not found!"

10.	 If the folder exists, then we want to call the subRecursiveFolders subroutine. When we do
this, we want to pass the Folder object from GetFolder. The code to do this is seen below:

If objFSO.FolderExists(strTarget) Then

subRecursiveFolders objFSO.GetFolder(strTarget)

11.	 If the folder does not exist, then we want to display a message box and ask if the user
wants to create the missing folder. Use the strPrompt variable and the strTitle variable for
the prompt and the title of the message box. Use the intrinsic button constant vbYesNo
to display yes and no buttons. Add to this constant the vbQuestion constant to cause the
message box to display a question mark. Capture the return code in the errRTN variable.
The code to do this is seen below:

errRTN = msgBox(strPrompt,vbYesNo+vbQuestion,strTitle)

12.	 If the errRTN code is equal to vbYes, then we will create the folder. If not, we do not do
anything. This code is seen below:

If errRTN = vbYes Then

objFSO.CreateFolder(strTarget)

End If

Chapter 7 Working with Folders 181
13. Close out the folder exists If…Then loop by using End If.

Warning The coding will actually look a little strange at the end of the subCheck sub­
routine. You will have End If, a new line, End If, a new line, and End sub. Tab your code
over to make it easy to read. Leaving out any of these statements will result in errors.

14.	 At the bottom of your script, begin a new subroutine called subRecursiveFolders. You will
pass a value to this subroutine called folder. Inside the subroutine, anything that is
passed as a parameter to the subroutine will be known as a folder inside the subroutine.
Make sure you close out the subroutine. The code to do this looks like the following:

Sub subRecursiveFolders(Folder)

End sub

15.	 Dim a variable inside the subroutine called objFolder. This variable will be used to hold
an individual folder object when iterating through the collection of subfolders. The code
to do this looks like the following:

Dim objFolder

16.	 Use the subFolders method to obtain a collection of subfolders. Use For…Each…Next to
walk through this collection. Call each individual folder in the collection objFolder, as
seen below:

For Each objFolder In Folder.subFolders

17.	 Print out the path to each folder in the collection and then call the subRecursiveFolders
subroutine while passing objFolder as a parameter. The code to do this looks like the fol­
lowing:

WScript.Echo objFolder.Path

subRecursiveFolders objFolder

Next

18.	 Call the subCheck subroutine by placing the name of the subroutine on the line after the
FileSystemObject is created. This is seen below:

subCheck

19.	 Save and run the script. It should either produce a listing of folders or offer to create a
nonexistent folder. If it does not, then compare your script with the \My Docu­
ments\Microsoft Press\VBScriptSBS\ch07\RecursiveListOfFolders.vbs script.

182 Part II Basic Windows Administration
Creating Folders Step-by-Step Exercises
In this section, you are going to practice creating folders. The result of this practice will be a
script that can be used for creating multiple folders for a variety of occasions.

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\BlankTemplate.vbs in
Notepad or some other script editor and save the file as yourNamesbsCreateFolders.vbs.

2.	 At the top of the script, set Option Explicit.

3.	 Declare variables for the following: numFolders, folderPath, folderPrefix, objFSO,
objFolder, i, objShell, and strDocPath. The Header section of your script will look like the
following:

Option Explicit

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

Dim objShell

Dim strDocPath

4.	 Create an instance of the wshShell object. Use the variable objShell to hold the object that
is returned. This line will look like the code below:

Set objShell = CreateObject("WScript.Shell")

5.	 Use the strDocPath variable to hold the path that is obtained by using the SpecialFolders
property of the wshShell object. This is seen below:

strDocPath = objShell.SpecialFolders("mydocuments")

6.	 Assign a value of 10 to the variable numFolders.

7.	 Use the folderPath variable to hold strDocPath concatenated with a backslash. This is
seen below:

folderPath = strDocPath & "\"

8.	 Assign folderPrefix to be equal to "Student". (The quotation marks are required.) The Ref­
erence section of the script will look like the following:

Set objShell = CreateObject("WScript.Shell")

strDocPath = objShell.SpecialFolders("mydocuments")

numFolders = 10

folderPath = strDocPath & "\"

folderPrefix = "Student"

9.	 Begin a For...Next loop that counts from 1 to numFolders. Use i for the counter variable,
as seen below:

For i = 1 To numFolders

Chapter 7 Working with Folders 183
10.	 Create an instance of the FileSystemObject and use the variable objFSO to hold the
object. The code will look like the following:

Set objFSO = CreateObject("Scripting.FileSystemObject")

11.	 Use the FolderExists method to check for the existence of the folder prior to creating it.
If the folder exists, echo out the path and state that it is not created. The code for this
will look like the following:

If objFSO.FolderExists(folderPath & folderPrefix & i) Then

WScript.Echo(folderPath & folderPrefix & i & " exists." _

& " folder not created")

12.	 If the folder does not exist, you will need to create it. To do this, build the path and the
prefix. Then increment the i counter. The code will look like the following:

Else

Set objFolder = objFSO.CreateFolder(folderPath & folderPreFix & i)

13.	 Echo out the folder path, prefix, and counter. Then state that the folder was created. The
code will look like the following:

WScript.Echo(folderPath & folderPrefix & i & " folder created")

14.	 Use End If to close out the If...Then section.

15.	 Use Next to close out the For...Next loop.

The completed code follows:

Option Explicit

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

Dim objShell

Dim strDocPath

Set objShell = CreateObject("WScript.Shell")

strDocPath = objShell.SpecialFolders("mydocuments")

numFolders = 10

folderPath = strDocPath & "\"

folderPrefix = "Student"

For i = 1 To numFolders

Set objFSO = CreateObject("Scripting.FileSystemObject")

If objFSO.FolderExists(folderPath & folderPrefix & i) Then

WScript.Echo(folderPath & folderPrefix & i & " exists." _

& " folder not created")

Else

Set objFolder = objFSO.CreateFolder(folderPath & folderPreFix & i)

WScript.Echo(folderPath & folderPrefix & i & " folder created")

End If

Next

184 Part II Basic Windows Administration
One Step Further: Deleting Folders
In this section, you are going to delete the folders created in the previous step-by-step exercise.

1.	 Open Notepad or your script editor of choice.

2.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch07\OneStepFur­
ther\sbsCreateFolders.vbs script and save it as YourNamesbsDeleteFolders.vbs.

3.	 In the Worker section of the script, inside the If objFSO.FolderExists statement, locate the
line that says that the folder exists and is not to be created. Delete the portion that says
“folder not created”. The revised line looks like the following (make sure you remove the
line continuation from the end of the revised line):

WScript.Echo(folderPath & folderPrefix & i & " exists.")

4.	 Use the DeleteFolder method from the fileSystemObject to delete the folderPath & folder-
Prefix & i folder.

objFSO.DeleteFolder(folderPath & folderPrefix & i)

5.	 Use WScript.Echo to print out that (folderPath & folderPrefix & i) was deleted. The code
will look like the following:

WScript.Echo(folderPath & folderPrefix & i & " was deleted")

6.	 In the Else portion of the If folder exists Then … statement, delete the line that creates the
folder. It will look like the following:

Set objFolder = objFSO.CreateFolder(folderPath & folderPreFix & i)

7.	 Also in the Else portion of the If folder exists Then … statement, change the line to read
that the folder does not exist, rather than saying it was created. The revised line looks
like the following:

WScript.Echo(folderPath & folderPrefix & i & " folder does not exist")

Chapter 7 Working with Folders 185
Chapter 7 Quick Reference

To Do This

Prevent errors when creating or deleting folders Use the folderExists method inside of an
If…Then…Else construction

Bind to a folder	 Use the GetFolder method

Provide access to the properties of a folder Bind to the folder using GetFolder

Create a folder object	 Use the CreateFolder method

Delete a folder	 Use the DeleteFolder method

Obtain a collection of folders	 Use the subFolders method

Copy a folder	 Use the CopyFolder method

Move a folder	 Use the MoveFolder method

Rename a folder	 Move the folder to the same location while
specifying a new name (use the MoveFolder
method)

Chapter 8

Using WMI

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the fol­
lowing concepts from earlier chapters:

■ Implementing a dictionary

■ Implementing the For…Next statement

■ Implementing the Select Case construction

After completing this chapter, you will be able to:

■ Connect to the WMI provider

■ Navigate the WMI namespace

■ Run queries to retrieve information from WMI

■ Send the output of a WMI query to a dictionary

Leveraging WMI
The discussion in the first few chapters of this book focused on what you can do with
Microsoft Visual Basic, Scripting Edition (VBScript). From a network management perspec­
tive, many useful tasks can be accomplished using just VBScript, but to truly begin to unleash
the power of scripting, you need to bring in additional tools. This is where Windows Manage­
ment Instrumentation (WMI) comes into play. WMI was designed to provide access to many
powerful ways of managing Microsoft Windows systems. In Windows Server 2003, WMI was
expanded to include management of many aspects of server operations, including both con­
figuration and reporting capabilities of nearly every facet of the server. Some of the tasks you
can perform with WMI are:

■ Report on drive configuration

■ Report on available memory, both physical and virtual

■ Back up the event log

■ Modify the registry

■ Schedule tasks

■ Share folders
187

188 Part II Basic Windows Administration
■	 Switch from a static to a dynamic Internet Protocol (IP) address

Understanding the WMI Model
WMI provides access to information about the managed objects that make up your computer
systems. To service information requests, WMI uses a hierarchical namespace, in which the
layers build upon one another like the folder structure on your hard disk drive. These
namespaces are used to organize the objects. For example, there is a RSOP namespace that is
used to provide access to Resultant Set of Policy information, and there is a MicrosoftDNS
namespace that allows you to work with Domain Name System (DNS). Although it is true that
WMI is a hierarchical namespace, the term doesn’t really convey the richness of WMI. The
WMI model has three sections that you need to be aware of: resources, infrastructure, and
consumers (see Figure 8-1). The use of these components is listed below.

■	 WMI resources Resources include anything that can be accessed by using WMI—the file
system, networked components, event logs, files, folders, disks, Microsoft Active Directory
directory service, and so on.

■	 WMI infrastructure The infrastructure comprises three parts: the WMI service, the WMI
repository, and the WMI providers. Of these parts, WMI providers are most important to
network administrators because they provide the means for WMI to gather needed infor­
mation. If the provider does not exist, then none of the classes will exist. (This is com­
mon on Windows Server 2003, because the MSI Provider is not installed by default. This
means the WIN32_Product class is not available, because it relies upon the MSI Provider.)

■	 WMI consumers A consumer “consumes” the data from WMI. A consumer can be a
script written in VBScript, an enterprise management software package, or some other
tool or utility that executes WMI queries.

WMI Provider

Router
Hard Drive
Mouse
Video Card
Processor
PCI Bus
Sound Card
Operating System
Applications
Hot Fixes

C
om

m
unication g

oes throug
h the p

rovid
er

managed object

WMI Service Repository

Infrastructure

Applications

Figure 8-1 Components that make WMI work

Chapter 8 Using WMI 189
Working with Objects and Namespaces

Let’s go back to the idea of a namespace introduced earlier in this chapter. You can think of a
namespace as a way to organize or collect data related to similar items. Visualize an old-fash­
ioned filing cabinet. Each drawer can represent a particular namespace. Inside this drawer are
hanging folders that collect information related to a subset of what the drawer holds. For
example, at home in my filing cabinet, I have a drawer reserved for information related to my
woodworking tools. Inside this particular drawer are hanging folders with information about
my table saw, my planer, my joiner, my dust collector, and so on. In the folder for the table saw
is information about the motor, the blades, and the various accessories I purchased for the
saw (such as an over-arm blade guard).

The WMI namespace is organized in a similar fashion. The namespaces are the file cabinets.
The providers are drawers in the file cabinet. The WMI classes are the folders in the drawers
of the file cabinet. The namespaces on a Windows XP computer are seen in Figure 8-2.

Figure 8-2 WMI namespaces on Windows XP

Namespaces contain objects, and these objects contain properties you can manipulate.

Let’s use a WMI script, ListWMINamespaces.vbs, to illustrate just how the WMI namespace is

organized.

ListWMINamespaces.vbs
strComputer = "."

Set objSWbemServices = GetObject("winmgmts:\\" & strComputer & "\root")

Set colNameSpaces = objSwbemServices.InstancesOf("__NAMESPACE")

190 Part II Basic Windows Administration
For Each objNameSpace In colNameSpaces

WScript.Echo objNameSpace.Name

Next

On a Windows Server 2003 Server, the results would look like the following when running
ListWMINamespaces.vbs from CScript:

SECURITY

perfmon

RSOP

Cli

MSCluster

WMI

CIMV2

MicrosoftActiveDirectory

Policy

MicrosoftDNS

MicrosoftNLB

Microsoft

DEFAULT

directory

subscription

So what does all this mean, you ask? It means that on a Windows Server 2003 server there are
more than a dozen different namespaces from which you could pull information about the
server. Understanding that the different namespaces exist is the first step to being able to nav­
igate in WMI to find the information you need. Often, students and people new to VBScript
work on a WMI script to make the script perform a certain action, which is a great way to learn
scripting. However, what they often do not know is which namespace they need to connect to
so that they can accomplish their task. When I tell them which namespace to work with, they
sometimes reply, “It is fine for you to tell me this, but how do I know that the such and such
namespace even exists?” By using the ListWMINamespaces.vbs script, you can easily generate
a list of namespaces installed on a particular machine, and armed with that information,
search on Microsoft Developer Network (MSDN) to see what information it is able to provide.

Let’s discuss the preceding script, ListWMINamespaces.vbs, because it’s similar to many
other WMI scripts. The first line sets the variable strComputer equal to ".". With this construc­
tion (period in quotation marks), the script will operate on this computer only. The dot allows
the script to run locally on many computers without you needing to define or change the
name included in the script.

The next line of the script is used to define the variable objSWbemServices and set it equal to
the handle that is returned by using the GetObject method to connect to winmgmts and access
the root namespace on the local computer. (The connection string in WMI is sometimes
referred to as a moniker. The word moniker comes from old Irish and simply means nickname,
or familiar name.) We will discuss the WMI moniker in much more detail in Chapter 9, “WMI
Continued.” These first two lines of the script can be reused time and again in many WMI
scripts. In the third line of the script, you use the Set command to assign colNameSpaces to be

Chapter 8 Using WMI 191
equal to a collection represented by the instances of the command that query for the presence
of the word __Namespace. The Worker information section of the script simply uses a For
Each...Next loop to iterate through the collection of namespaces returned by the query and to
echo them out to the screen.

Tip Although in the ListWMINamespaces.vbs script I used all lowercase in code for the win­
mgmts name, there really is no requirement for name case with this particular moniker, and in
the Microsoft Platform SDK, you will find nearly every possible combination: winmgmts, Win-
Mgmts, WINMGMTS, and I bet even winMgmts.

Keep in mind, however, that name case does matter with some monikers such as “WinNT:”,
which is used with Active Directory Service Interfaces (ADSI).

Digging Deeper
Knowing the default namespaces gives some information, and though it’s helpful, to better
map out the WMI namespace, you’ll want information about the child namespaces as well.
You’ll need to implement a recursive query so that you can gain access to the child namespace
data. The next script, RecursiveListWMINamespaces.vbs, is similar to ListWMI
Namespaces.vbs, except that it uses a subroutine that calls itself to list the child namespaces.
On some computers, this script might seem to perform a little slowly during the first running,
so I included a WScript.Echo (Now) command at the beginning and at the end of the script.
This enables the network administrator to determine how long the script takes to run.

As with the previous script, RecursiveListWMINamespaces.vbs uses strNamespace with a "." to
indicate the script is run against the local computer. It then calls the subroutine named Enum-
Namespaces and starts with the “root” namespace.

Subroutines
Basically, a subroutine is a section of a script that you can get to from anywhere inside the
script. All we need to do is call the subroutine by name to jump to a particular part of the
script. You use a subroutine in this script rather than code that is sequential because
you need to execute the commands that make up the subroutine as a group. When you
are finished, you exit out. You can easily identify a subroutine because it begins with the
word Sub followed by the name of the subroutine, and it ends with the End sub com­
mand. When you exit a subroutine (via the End sub command), you go back to the line
after the one that caused you to enter the subroutine.

192 Part II Basic Windows Administration
Once you enter the subroutine, you echo strNamespace, which on the first pass is simply the
root. Next you use GetObject to make a connection to the WMI namespace that is identified by
the subroutine strNamespace argument. In the first pass, you are connected to the root. The
subroutine then retrieves all namespaces that are immediately below the one it is currently
connected to. You then use a For Each…Next construction to loop through all the namespaces
below the currently connected one. In doing so, you also concatenate the names to provide a
fully qualified name to the namespace. You take the newly constructed name, pass it to Enum-
Namespaces, and work through the namespace one more time.

RecursiveListWMINamespaces.vbs
WScript.Echo(Now)

strComputer = "."

Call EnumNamespaces("root")

Sub EnumNamespaces(strNamespace)

WScript.Echo strNamespace

Set objSWbemServices = _

GetObject("winmgmts:\\" & strComputer & "\" & strNamespace)

Set colNamespaces = objSWbemServices.InstancesOf("__NAMESPACE")

For Each objNameSpace In colNamespaces

Call EnumNamespaces(strNamespace & "\" & objNamespace.Name)

Next

End sub

WScript.Echo("all done " & Now)

Listing WMI Providers
Understanding the namespace assists the network administrator with judiciously applying
WMI scripting to his or her network duties. However, as mentioned earlier, to access informa­
tion via WMI, you must have access to a WMI provider. Once the provider is implemented,
you can gain access to the information that is made available.

The following script, ListWMIProviders.vbs, enumerates all the WMI providers instrumented
on the machine in the root\cimv2 namespace. In the supplemental folder, there is a series of
Microsoft Office Excel spreadsheets that list classes supported by the various providers
installed in the different namespaces of a standard Windows build. This information can lead
the network administrator to MSDN, the platform SDK, or some other place to find details
about the methods supported by the provider.

ListWMIProviders.vbs
strComputer = "."

Set objSWbemServices = _

GetObject("winmgmts:\\" & strComputer & "\root\cimv2")

Set colWin32Providers = objSWbemServices.InstancesOf("__Win32Provider")

For Each objWin32Provider In colWin32Providers

WScript.Echo objWin32Provider.Name

Next

Chapter 8 Using WMI 193
When you run the script on a Windows Server 2003 server, you get the following output:

Win32_WIN32_TSLOGONSETTING_Prov

MS_NT_EVENTLOG_PROVIDER

Win32_WIN32_TSENVIRONMENTSETTING_Prov

SCM Event Provider

ProviderSubSystem

VolumeChangeEvents

NamedJobObjectLimitSettingProv

HiPerfCooker_v1

WMIPingProvider

Win32_WIN32_TSNETWORKADAPTERSETTING_Prov

SystemConfigurationChangeEvents

Win32_WIN32_TERMINALSERVICE_Prov

MSVDS__PROVIDER

Win32_WIN32_TSREMOTECONTROLSETTING_Prov

Win32_WIN32_TSNETWORKADAPTERLISTSETTING_Prov

Win32_WIN32_COMPUTERSYSTEMWINDOWSPRODUCTACTIVATIONSETTING_Prov

Win32_WIN32_TSSESSIONDIRECTORY_Prov

CmdTriggerConsumer

Standard Non-COM Event Provider

SessionProvider

WBEMCORE

RouteEventProvider

WhqlProvider

Win32_WIN32_TSSESSIONSETTING_Prov

Win32_WIN32_TERMINALTERMINALSETTING_Prov

Win32_WIN32_TSCLIENTSETTING_Prov

Win32_WIN32_TERMINALSERVICESETTING_Prov

WMI Kernel Trace Event Provider

Win32_WIN32_PROXY_Prov

NamedJobObjectProv

MS_Shutdown_Event_Provider

SECRCW32

Win32ClockProvider

MSVSS__PROVIDER

MS_Power_Management_Event_Provider

Win32_WIN32_WINDOWSPRODUCTACTIVATION_Prov

RouteProvider

Cimwin32A

Msft_ProviderSubSystem

Win32_WIN32_TERMINALSERVICETOSETTING_Prov

NamedJobObjectSecLimitSettingProv

Win32_WIN32_TSSESSIONDIRECTORYSETTING_Prov

Win32_WIN32_TSPERMISSIONSSETTING_Prov

Win32_WIN32_TSACCOUNT_Prov

Win32_WIN32_TERMINAL_Prov

DskQuotaProvider

Win32_WIN32_TSGENERALSETTING_Prov

CIMWin32

NamedJobObjectActgInfoProv

NT5_GenericPerfProvider_V1

WMI Self-Instrumentation Event Provider

DFSProvider

MS_NT_EVENTLOG_EVENT_PROVIDER

194 Part II Basic Windows Administration
Working with WMI Classes
In addition to working with namespaces, the inquisitive network administrator will also want
to explore the concept of classes. In WMI parlance, you have core classes, common classes,
and dynamic classes. Core classes represent managed objects that apply to all areas of manage­
ment. These classes provide a basic vocabulary for analyzing and describing managed sys­
tems. Two examples of core classes are parameters and the systemSecurity class. Common
classes are extensions of the core classes and represent managed objects that apply to specific
management areas. However, common classes are independent from a particular implementa­
tion or technology. The CIM_UnitaryComputerSystem is an example of a common class. Core
and common classes are not used as much by network administrators because they serve as
templates from which other classes are derived.

Therefore, many of the classes stored in root\cimv2 are abstract classes and are used as tem­
plates, and their properties and methods are inherited by classes that are derived from them.
Abstract classes are not to be queried directly. However, a few classes in root\cimv2 are
dynamic classes used to hold actual information. The important aspect to remember about
dynamic classes is that instances of a dynamic class are generated by a provider and are there­
fore more likely to retrieve “live” data from the system.

The following script, ListWMIClasses.vbs, returns a list of classes found in the root\cimv2
namespace. There are more than 900 classes listed in the root\cimv2 namespace of most com­
puters. A listing of the WMI classes in each of the namespaces is listed in the spreadsheets in
the \My Documents\Microsoft Press\VBScriptSBS\Supplemental folder.

ListWMIClasses.vbs
Option Explicit

Dim strComputer 'target computer

Dim wmiNS 'wmi namespace

Dim objwmiService 'SwbemServices object. The connection into WMI

Dim colClasses 'sWbemObject set object. A collection of items

Dim objClass 'sWbemObject. An item in colClasses

Dim strOUT 'output of all items

strComputer = "."

wmiNS = "\root\cimv2" 'must precede namespace with \

Set objwmiService = _

GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colClasses = objwmiService.SubclassesOf()

For Each objClass In colClasses

strOUT = strOUT & objClass.Path_.class & vbcrlf

Next

WScript.Echo funLine("There are " & colClasses.count & " classes" &_

" in the " & wmiNS & " namespace")

WScript.Echo strOUT

' *** function below ***

Chapter 8 Using WMI 195
Function funLine(strIn)

funLine = Len(strIn)+1

funLine = strIN & VbCrLf & String(funLine,"=")

End Function

Search for specific WMI classes

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch08\ListWMIClasses.vbs
script in Microsoft Notepad or the script editor of your choosing. Save the file as Your-
NameListWMIClassesDictionary.vbs.

2.	 Delete the line declaring the variable strOUT, because it will not be needed in this script.

3.	 Add a variable to hold the dictionary object that will be created. Call it objDictionary, as
seen below:

Dim objDictionary

4.	 Add a variable to hold an individual key in the dictionary. Call it strKey, as seen below:

Dim strKey

5.	 Add one more variable. This variable will be used to hold the search string. Call it

strSearch, as seen below.

Dim strSearch

6.	 In the Reference section of your script, assign a string value to the strSearch variable. This
will be used to locate class names. I used "process" for my initial search.

strSearch = "process"

7.	 Now it is time to create the dictionary object. Place the code just before you create the
connection into WMI. This will be the first line in your Worker section. Assign the dic­
tionary to the variable objDictionary, as seen below:

Set objDictionary = CreateObject("Scripting.Dictionary")

8.	 Inside the For…Each…Next loop that walks through the colClasses collection, delete
strOUT = strOUT but do not delete the entire line. Instead, prefix the line with the com­
mand to add the class name to the dictionary. Because each class name is unique in the
WMI namespace, and because we must have both a key and an item in the dictionary,
we will use the class name twice, as seen in the code below:

objDictionary.Add objClass.Path_.class, objClass.Path_.class

9.	 Delete the Output section of the script, as well as the function. The code to be removed
is seen below:

WScript.Echo funLine("There are " & colClasses.count & " classes" &_

" in the " & wmiNS & " namespace")

WScript.Echo strOUT

196 Part II Basic Windows Administration
' *** function below ***

Function funLine(strIn)

funLine = Len(strIN)+1

funLine = strIN & VbCrLf & String(funLine,"=")

End Function

10.	 Use For…Each…Next to walk through the collection of keys in the dictionary. We can use
the Keys method to get a collection of dictionary keys. Use the strKey variable to singu­
larize an individual dictionary key. Make sure you close out the For…Each…Next block
with the word Next. This is seen below:

For Each strKey In objDictionary.Keys

Next

11.	 Use the InStr function to look inside the dictionary key represented by the variable str-
Key to see if there is a pattern match with the word specified in the variable strSearch.
Begin the search at the first position in the word, and make the search case insensitive.
Make sure you close out the If…Then…End If construction. Echo out the results. This
code goes inside the loop and looks like the following:

If InStr(1,strKey, strSearch,vbTextCompare) Then

WScript.Echo strKey

End If

12.	 Save and run your script. It should produce a listing something like the following when
run from CScript. If it does not, then compare your script with the \My Docu­
ments\Microsoft Press\VBScriptSBS\ch08\ListWMIClassesDictionary.vbs script.

Win32_ProcessTrace

Win32_ProcessStartTrace

Win32_ProcessStopTrace

CIM_Process

Win32_Process

CIM_Processor

Win32_Processor

Win32_PerfRawData_PerfProc_Process

Win32_PerfRawData_PerfOS_Processor

Win32_PerfRawData_PerfProc_ProcessAddressSpace_Costly

Win32_PerfFormattedData_PerfOS_Processor

Win32_PerfFormattedData_PerfProc_Process

Win32_PerfFormattedData_PerfProc_ProcessAddressSpace_Costly

CIM_OSProcess

Win32_SystemProcesses

Win32_ComputerSystemProcessor

CIM_ProcessThread

Win32_SessionProcess

CIM_AssociatedProcessorMemory

Win32_AssociatedProcessorMemory

CIM_ProcessExecutable

Win32_NamedJobObjectProcess

Win32_ProcessStartup

Chapter 8 Using WMI 197
13.	 EXTRA CREDIT: Modify your script to write the results out to a text file. Compare your
results to \My Documents\Microsoft Press\VBScriptSBS\ch08\ListWMIClassesText-
Search.vbs.

Adding an inputbox search

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch08\ListWMIClassesDic­
tionary.vbs script and save it as YourNameListWMIClassesDictionarySearch.vbs.

2.	 Add three variables in the Header section of the script. These variables will be used for
the title, prompt, and default value of the inputbox function. Call them strTitle, strPrompt,
and strDefault, as seen below:

Dim strTitle 'title for the inputbox

Dim strPrompt 'prompt for the inputbox

Dim strDefault 'default value for the inputbox

3.	 In the Reference section of the script, assign a string value to indicate the purpose of the
script to the strTitle variable. My code looks like the following:

strTitle = "Search for WMI classes"

4.	 On the next line, assign a prompt to the strPrompt variable that tells the user how to use
the script. My code looks like the following:

strPrompt = "Enter class to search for" &_

vbNewLine & "No quotes required"

5.	 On the next line in the Reference section, assign the string "Process" to the strDefault
variable. This is seen below:

strDefault = "Process"

6.	 Edit the strSearch variable assignment in the Reference section, so it does not have a
string literal assigned to it. Instead of “hardcoding” our search string, we will use the
inputbox function to allow the value to be supplied at runtime. This is seen below:

strSearch = InputBox(strPrompt,strTitle,strDefault)

7.	 Save and run your script. You should see a dialog box that allows you to change the
search string. It should have the value Process as the default value.

Viewing Properties

A property in WMI is a value that is used to indicate a characteristic (something describable)
about a class. A property has a name and a domain that is used to indicate the class that actu­
ally owns the property. Properties can be viewed in terms of a pair of functions: one to set the
property value and another to retrieve the property value. The ListClassProperties.vbs script
lists all the properties of the WIN32_Service class.

198 Part II Basic Windows Administration
ListClassProperties.vbs
Option Explicit

'On Error Resume Next

Dim strComputer 'name of target computer

Dim wmiNS 'WMI namespace that contains class

Dim wmiQuery 'simply the name of the class

Dim objWMIService 'connection to WMI namespace AND Class

Dim objItem 'item in the collection of properties

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = ":win32_service"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & _

wmiNS & wmiQuery)

WScript.Echo wmiQuery & vbTab & " has " & _

objWMIService.Properties_.count & " Properties"

For Each objItem in objWMIService.Properties_

WScript.Echo "Property: " & objItem.name

Next

Detailing service information

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates\wmiTemplate.vbs
script in Notepad or your favorite script editor. Save the file as YourName
ServiceInfo.vbs.

2.	 Add the word service to the end of the wmiQuery line, making sure there is no space
between the underscore and the word service. This will be the WMI class we will query.
The completed line looks like the following:

wmiQuery = "Select * from win32_Service"

3.	 We are going to report on only two properties: Name and Started. Delete all but two of
the WScript.Echo commands. On the two remaining echo commands, add the properties
Name and Started after the echo. This section of code now looks like the following:

WScript.Echo ": " & objItem.Name

WScript.Echo ": " & objItem.Started

4.	 Save and run your script. The output is not very user friendly, as seen in the snipped out­
put below:

: Alerter

: False

: ALG

: True

: AppMgmt

: False

: aspnet_state

: False

Chapter 8 Using WMI 199
5.	 To improve readability, add the words Name and Started in front of the colons, as seen
below:

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Started: " & objItem.Started

6.	 Save and run your script. The output is better but still hard to read, as seen in the
snipped output below:

Name: Alerter

Started: False

Name: ALG

Started: True

Name: AppMgmt

Started: False

Name: aspnet_state

Started: False

7.	 There are two choices for improving the output. The first is to space over the second line,
as seen below:

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo Space(6) & "Started: " & objItem.Started

Next

The second choice is to put the output on the same line:

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name, _

"Started: " & objItem.Started

Next

8.	 Choose a method for improving the script output. Save and run the script. If there are
problems with the output, compare your script with \My Documents\Microsoft
Press\VBScriptSBS\ch08\ServiceINFO.vbs.

Working with WMI Methods

As you’ve learned in earlier chapters, a method answers the question “What does this thing
do?” In many cases, the answer is “Well, it does nothing.” However, the good thing about
WMI is that it’s constantly evolving—and in Windows Server 2003, more methods have been
added than ever before. Like a property, a method also has a name and a domain. And just like
a property, the method’s domain refers back to the owning class. To determine if a class has
any methods, you can use the ListClassMethods.vbs script. When run in CScript, the List-
ClassMethods.vbs script produces the following output:

:win32_service has 10 Methods

Method: StartService

Method: StopService

200 Part II Basic Windows Administration
Method: PauseService

Method: ResumeService

Method: InterrogateService

Method: UserControlService

Method: Create

Method: Change

Method: ChangeStartMode

Method: Delete

The 10 methods from the WIN32_Service class can solve a number of problems for the net­
work administrator. Suppose you want to stop the alerter service on all the computers on the
network, then you could use the StopService method. If you need to change a service account
password, then you use the Change method.

ListClassMethods.vbs
Option Explicit

'On Error Resume Next

dim strComputer 'name of target computer

dim wmiNS 'WMI namespace that contains class

dim wmiQuery 'simply the name of the class

dim objWMIService 'connection to WMI Namespace AND Class

dim objItem 'item in the collection of properties

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = ":win32_Service"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & _

wmiNS & wmiQuery)

WScript.Echo wmiQuery & vbTab & " has " & _

objWMIService.Methods_.count & " Methods"

For Each objItem in objWMIService.Methods_

WScript.Echo "Method: " & objItem.name

Next

Note Just because a class has a method does not guarantee that the method is imple­
mented. You must verify that the implemented qualifier is attached to the method to ensure
the method actually works. This is because methods could be inherited from a parent class and
then not implemented in the child class. As an example, WIN32_Processor has a SetPowerState
method. You cannot use this method because it is not implemented. (The SetPowerState
method is inheritted from CIM_LogicalDevice, which is an abstract class used to create other
WMI classes.) You can do this by looking the method up in the Platform SDK. It will simply say
“implemented.” Looking up the method is the only way you can ensure that the implementa­
tion of the method you wish to use is actually available for the class. I will admit that I have
actually wasted several hours trying to make a particular method work, only to find out it was
not even implemented.

Chapter 8 Using WMI 201
Querying WMI

In most situations, when you use WMI, you are performing some sort of query. Even when
you’re going to set a particular property, you still need to execute a query to return a dataset
that enables you to perform the modification to the property. (A dataset is the data that comes
back to you as the result of a query, that is, it is a set of data.) In this section, you’ll look at the
methods used to query WMI.

Just the Steps To query WMI

1. Specify the computer name.

2. Define the namespace.

3. Connect to the provider using GetObject.

4. Issue the query.

5. Use For Each...Next to iterate through collection data.

One of the problems with Windows Server 2003 for the small to medium enterprise is Win­
dows Server 2003 product activation. Although the larger customers have the advantage of
“select” keys that automatically activate the product, smaller companies often are not aware of
the advantages of volume licensing and as a result do not have access to these keys. In addi­
tion, I’ve seen larger customers use the wrong key—you can easily forget to activate the copy of
Windows Server 2003. Many customers like to monitor the newly built machine prior to
actual activation because of the problems resulting from multiple activation requests. As is
often the case with many information technology (IT) departments, emergencies arise, and it
is easy to forget to make the trek back to the server rooms to activate the machines. This is
where the power of WMI scripting can come to the rescue. The following script, Display
WPAStatus.vbs, uses the new Win32_WindowsProductActivation WMI class to determine the
status of product activation.

DisplayWPAStatus.vbs
Option Explicit

'On Error Resume Next

dim strComputer

dim wmiNS

dim wmiQuery

dim objWMIService

dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_WindowsProductActivation"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems

202 Part II Basic Windows Administration
WScript.Echo "ActivationRequired: " & objItem.ActivationRequired

WScript.Echo "IsNotificationOn: " & objItem.IsNotificationOn

WScript.Echo "ProductID: " & objItem.ProductID

WScript.Echo "RemainingEvaluationPeriod: " & _

objItem.RemainingEvaluationPeriod

WScript.Echo "RemainingGracePeriod: " & objItem.RemainingGracePeriod

WScript.Echo "ServerName: " & objItem.ServerName

Next

Header Information

The Header information section of DisplayWPAStatus.vbs contains the two normal items,
Option Explicit and On Error Resume Next. (If you are unfamiliar with these commands, refer to
Chapter 1, “Starting from Scratch.”) Next, you declare six variables to be used in this script.
Because you are writing a WMI script, you make up some new variable names. Table 8-1 lists
the variables and their intended use in this script.

Table 8-1 Variables used in DisplayWPAStatus.vbs

Variable name Variable use

strComputer Holds the name of the computer the query will target at run time

wmiNS Holds the namespace that the WMI query will target

wmiQuery Holds the WMI query

objWMIService Holds the connection to the WMI service

colItems Holds the collection of items returned by the WMI query

objItem Holds the individual item from which the properties will be queried

Reference Information

The Reference information section of the script is used to assign value to some of the variables
declared in the Header information section. The first variable used in the Reference informa­
tion section is strComputer, whose value is set to ".". In WMI shorthand, "." is used to mean
“this computer only.” So the WMI query will operate on localhost. The second variable
assigned a value is wmiNS, which is used to hold the value of the WMI namespace you query.
You could include the namespace and the query on the same line of the script; however, by
breaking the namespace and the query out of the connection string, you make it easier to
reuse the script. The next variable is wmiQuery, which receives the value of "Select * from
Win32_WindowsProductActivation". You can easily change the query to ask for other informa­
tion. You are asking for everything that is contained in the local computer from the
Win32_WindowsProductActivation namespace.

You use the Set command to set objWMIService to the handle that is obtained by the GetObject
command. The syntax for this command is very important because it is seminal to working
with WMI. When making a connection using winmgmts://, winmgmts is called a moniker. A
moniker works in the same way that the phrase “abracadabra” used to work in the old movies.
It’s a shortcut that performs a lot of connection work in the background. Remember the

Chapter 8 Using WMI 203
magic phrase winmgmts because it will do much of the work for you, including opening the
door to the storehouse of valuable WMI data. The last item in the Reference information sec­
tion is the use of the variable colItems, which is used to object returned by the ExecQuery
method of the SWbemServices object. The Reference information section follows:

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_WindowsProductActivation"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Worker and Output Information

The Worker information section is the part of the script that works through the collection of
data returned and produces the Windows Product Activation (WPA) information. This sec­
tion is always going to be customized for each WMI script you write, because each query or
each provider used returns customized data.

Because WMI returns data in the form of a collection, you need to use a For Each...Next loop
to iterate through the items in the collection. This loop is required—even when WMI returns
only one item, WMI still returns that item in a collection. Your question at this point is prob­
ably “How do I know what to request from WMI?” I looked that up in the Platform SDK. By
looking in the SDK for Win32_WindowsProductActivation, I learned that several properties of
interest to a network administrator will return information. The SDK also told me that the
properties are all read-only (which would prevent us from flipping the ActivationRequired
field to false. The Worker and Output information section of this script follows:

For Each objItem In colItems

WScript.Echo "ActivationRequired: " & objItem.ActivationRequired

WScript.Echo "IsNotificationOn: " & objItem.IsNotificationOn

WScript.Echo "ProductID: " & objItem.ProductID

WScript.Echo "RemainingEvaluationPeriod: " & _

objItem.RemainingEvaluationPeriod

WScript.Echo "RemainingGracePeriod: " & objItem.RemainingGracePeriod

WScript.Echo "ServerName: " & objItem.ServerName

Next

The most interesting information in Win32_WindowsProductActivation is listed in Table 8-2.

Table 8-2 Properties of Win32_WindowsProductActivation

Property Meaning

ActivationRequired	 If 0, activation is not required. If 1, the system must be activated
within the number of days indicated by the RemainingGrace
Period property.

IsNotificationOn	 If 0, notification reminders and the activation icon are disabled.
If not equal to 0 and product activation is required, notification
reminders (message balloons) are enabled, and the activation
icon appears in the notification tray.

204 Part II Basic Windows Administration
Table 8-2 Properties of Win32_WindowsProductActivation

Property Meaning

ProductID	 A string of 20 characters separated by hyphens. This is the same
product ID that is displayed on the General tab of the System
Properties dialog box in Control Panel.

RemainingEvaluationPeriod If beta or evaluation media, this returns the number of days
remaining before expiration. If retail media, this field is set to
the largest possible unsigned value.

RemainingGracePeriod Number of days remaining before activation is required if
ActivationRequired is equal to 1.

ServerName Name of the system being queried. This could also be the IP
address of the system.

Retrieving Hotfix Information Step-by-Step Exercise
In this section, you use the Win32_QuickFixEngineering provider to retrieve information about
hotfixes installed on your server. This lab incorporates techniques learned in earlier chapters
into the information about WMI discussed in this chapter.

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\BlankTemplate.vbs in
Notepad or your favorite script editor.

2.	 Turn on Option Explicit by typing Option Explicit on the first line of the script.

3.	 Declare variables to be used in the script. There are six variables to be used: strComputer,
objWmiService, wmiNS, wmiQuery, objItem, and colItems.

4.	 Assign the value of "." to the variable strComputer. The code will look like the following:

strComputer = "."

5.	 Assign the value of "\root\cimv2" to the variable wmiNS. The code will look like the fol­
lowing:

wmiNS = "\root\cimv2"

6.	 Assign the query "Select * from Win32_QuickFixEngineering" to the variable wmiQuery.
The code will look like the following:

wmiQuery = "Select * from Win32_QuickFixEngineering"

7.	 Use the winmgmts moniker and the variable objWMIService as well as the GetObject
method to make a connection to WMI. Use the strComputer and the wmiNS variables to
specify the computer and the namespace to use. The code will look like the following:

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

8.	 Set the variable colItems to be equal to the connection that comes back from WMI when
it executes the query defined by wmiQuery. Your code should look like the following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

Chapter 8 Using WMI 205
9.	 Use a For Each...Next construction to iterate through the collection called colItems.
Assign the variable called objItem to each of the items returned from colItems. Your code
should look like this:

For Each objItem In colItems

10.	 Use WScript.Echo to echo out items such as the caption, CSName, and description. You
can copy the following items, or use the WMI SDK to look up
Win32_QuickFixEngineering and choose items of interest to you.

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "CSName: " & objItem.CSName

WScript.Echo "Description: " & objItem.Description

WScript.Echo "FixComments: " & objItem.FixComments

WScript.Echo "HotFixID: " & objItem.HotFixID

WScript.Echo "InstallDate: " & objItem.InstallDate

WScript.Echo "InstalledBy: " & objItem.InstalledBy

WScript.Echo "InstalledOn: " & objItem.InstalledOn

WScript.Echo "Name: " & objItem.Name

WScript.Echo "ServicePackInEffect: " & objItem.ServicePackInEffect

WScript.Echo "Status: " & objItem.Status

11.	 Close out your For Each...Next loop with the Next command.

12.	 Save your file as YourNameSBSQueryHotFix.vbs and run it in CScript.exe. If you do not
get the expected results, compare your script with \My Documents\Microsoft
Press\VBScriptSBS\ch08\StepByStep\SBSQueryHotFix.vbs.

One Step Further: Echoing the Time Zone
In this section, you modify the SBSQueryHotFix.vbs script so that it echoes out the time zone
configured on the computer.

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch08\OneStepFurther\SBS
QueryHotFix.vbs in Notepad or another script editor and save it as YourName
TimeZoneSolution.vbs.

2.	 Edit the wmiQuery line so that it points to Win32_TimeZone. The code will look like the
following:

wmiQuery = "Select * from Win32_TimeZone"

3.	 Inside the For Each objItem In colItems loop, delete all but one of the WScript.Echo state­
ments so that the code looks like the following:

For Each objItem In colItems

WScript.Echo "Caption: " & objItem.Caption

Next

4.	 Save and run the file. You are now pointing to the Caption property of Win32_TimeZone
in your script. No further changes are required for this section. If you have a problem,
compare your script to the TimeZoneSolution.vbs file in the OneStepFurther folder
under Chapter 8.

206 Part II Basic Windows Administration
Chapter 8 Quick Reference

To Do This

Find the default WMI namespace on a Use the Advanced tab from the WMI Control
computer tool

Find WMI classes on a computer Use the WMI Object Browser Tool

Make a connection into WMI Use the WMI moniker in your script

Use a shortcut name for the local computer Use a "." and assign it to the
variable holding the computer name in the script

Find detailed information about all WMI Use the Platform SDK
classes on a computer

Iterate through a collection of objects Use For…Each…Next
returned by the ExecQuery method of the
SWbemServices object

List all the namespaces on a computer Query instances of __NameSpace

List all providers installed in a particular Query instances of __Win32Provider
namespace

List all the classes in a particular namespace Use the SubclassesOf() method from the
on a computer SwbemServices object

Chapter 9

WMI Continued

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from earlier chapters:

■ Connecting to the default WMI namespace

■ Accessing properties of dynamic WMI classes

■ Implementing the For...Next statement

■ Implementing a WMI query

After completing this chapter, you will be able to:

■ Implement alternate ways of configuring the WMI moniker

■ Query WMI

■ Set impersonation levels

■ Define the WMI object path

■ Navigate the WMI namespace

Alternate Ways of Configuring the WMI Moniker
In this section, you are going to look at different ways of constructing the Windows Manage­
ment Instrumentation (WMI) moniker string. There are essentially three parts to the moniker.
Of the three parts, only one is mandatory. These parts are listed here:

■ The prefix winmgmts: (this is the mandatory part)

■ A security settings component

■ A WMI object path component

Just the Steps To construct the WMI moniker

1. Use the prefix WinMgmts:.

2. Define the security settings component, if desired.

3. Specify the WMI object path component, if desired.
207

208 Part II Basic Windows Administration
Accepting Defaults
Several fields are optional in constructing a finely tuned WMI moniker, and there are clearly
defined defaults for those optional fields. The defaults are stored in the following registry loca­
tion: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\Scripting. There are two
keys: impersonation level and default namespace. Impersonation level is set to a default of 3,
which means that WMI impersonates the logged-on user. The default namespace is set to
root\cimv2. In reality, these are pretty good defaults. The default computer is the local
machine, so you don’t need to specify the computer name when you’re simply running
against the local machine. All this means is that a simple connection string to WMI, using the
default moniker, would just be "winmgmts:\\". When using the GetObject method, you can use
the default connection string as follows:

Set objWMIService = GetObject("winmgmts:\\")

By using a default moniker and omitting the header information, you come up with a rather
lean script. You can shorten it even further, as you’ll learn in a bit. The SmallBIOS.vbs script
that follows is a shorter script than the DetermineBIOS.vbs script, which is included on the
companion CD-ROM. (The header information of SmallBIOS.vbs is omitted.)

SmallBIOS.vbs
wmiQuery = "Select * from Win32_BIOS"

Set objWMIService = GetObject("winmgmts:\\")

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

strBIOSVersion = Join(objItem.BIOSVersion, ",")

WScript.Echo "BIOSVersion: " & strBIOSVersion

WScript.Echo ": " & objItem.caption

WScript.Echo ": " & objItem.releaseDate

Next

Reference Information

The Reference information section of the script comprises three lines. Two of the lines are the
same as in many other WMI scripts; the first line in the Reference information section changes
depending upon what query you want to run. For the script to return information about the
basic input/output system (BIOS) on the server, you need to connect to the Win32_BIOS
namespace. Your WMI query does nothing fancy—it simply tells WMI that you want to select
everything contained in the Win32_BIOS namespace. The actual query looks like the following:

wmiQuery = "Select * from Win32_BIOS"

The two standard lines in the Reference section are the connection to WMI that uses the
GetObject method and the moniker. The short version of the moniker follows:

Set objWMIService = GetObject("winmgmts:\\")

Chapter 9 WMI Continued 209
Once you have the connection into WMI, you can begin to perform tasks with it. In this case,
you want to issue a query and hold the results of that query in a variable called colItems. So
you use the following line:

Set colItems = objWMIService.ExecQuery(wmiQuery)

By removing the actual WMI query from the ExecQuery string, you won’t need to edit this line
of the script when you wish to make a change to your WMI query. The same is true for the
WMI connection string—as long as you are running the script on your local machine and
working in the root\cimv2 namespace, you don’t need to modify that line either when you
wish to target a different computer. Now you can see why in our earlier WMI scripts we spec­
ified the computer by using strComputer—it gave us the ability to modify the value of that vari­
able without having to change the rest of the script.

Worker and Output Information

The Worker and Output information section of the script is used to iterate through the collec­
tion that is returned by wmiQuery. After that information is loaded into the collection of items
(colItems), you use a For Each...Next construction to walk through the collection and return
the desired information. The code for this section of script follows:

For Each objItem in colItems

strBIOSVersion = Join(objItem.BIOSVersion, ",")

WScript.Echo "BIOSVersion: " & strBIOSVersion

WScript.Echo ": " & objItem.caption

WScript.Echo ": " & objItem.releaseDate

Next

Each item in the collection is assigned to the variable objItem. In this particular situation, only
one BIOS can be queried from Win32_BIOS; the nature of WMI is to return single items as a
collection. Display the requested information by using the For Each...Next construction. Only
one item is in the collection and only one loop is made.

Working with Multivalue Properties

Most of the items in the Output information section are obvious to readers at this point. You
use WScript.Echo to output specific values. The first item, strBIOSVersion, is unique because
you use the Microsoft Visual Basic, Scripting Edition (VBScript) Join method to turn an array
into a string so you can use WScript.Echo to echo out the information. If you tried to use
WScript.Echo to directly print out the property, you would get a type mismatch error. (We talk
about the Join method later, so for now, let’s think of a Join as a “black box tool.”) This Join is
necessary because the data contained in the BIOSVersion property is stored as an array. Recall
from earlier chapters that you can think of an array as multiple cells in a spreadsheet, each of
which can contain a certain amount of data. The BIOSVersion property of Win32_BIOS con­
tains several fields of information, but you can’t simply use WScript.Echo objItem.BIOSVersion
because WScript won’t know which field you want returned and, consequently, the command

210 Part II Basic Windows Administration
will fail. As you learned in your previous study of arrays, you could use something like
objItem.BIOSVersion(0), and if you knew which field in the array contained the most salient
information, this would be a valid approach. Short of running the script multiple times and
changing the array value an arbitrary number of times, you need to take a better approach.

Note For more information about arrays, refer to Chapter 4, “Working with Arrays.”

One nice way to deal with the multivalue property problem is to use the Join function demon­
strated in our earlier script. Let’s see how that works. First you need to use a new variable that
will hold the result of your Join statement:

strBIOSVersion = Join(objItem.BIOSVersion, ",")

The Join function should be old hat to readers who are familiar with Transact-SQL (T-SQL).
An executed Join takes two arguments. It’s saying, “I want to join the first thing with the sec­
ond thing.” This is actually quite sophisticated. In the preceding Join statement, you join each
field from BIOSVersion with a comma. You assign the result of the operation to the variable str-
BIOSVersion, and you’re ready to echo it out in the next line of your script. Keep in mind that
the default query language into WMI is WMI Query Language (WQL). WQL is pronounced
“weequil” and SQL (Structured Query Language) is pronounced “seaquil”—they not only
sound alike but are alike in that many of the tasks you can perform in SQL can also be accom­
plished in WQL. The Join technique is very important, and you’ll use it again when you come
across other arrayed properties. Wondering how I knew that BIOSVersion was an array? The
Platform SDK told me.

Important If you try to print out a data value that is stored as an array, you will receive a
message stating: “Microsoft VBScript runtime error: type mismatch.” You can avoid this error by
using the ISArray function.

Detecting array properties

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates
\WMITemplate.vbs script in Microsoft Notepad or some other script editor and save it
as YourNameIsArray.vbs.

2.	 Turn off the On Error Resume Next command by remarking out the line.

'On Error Resume Next

3.	 Modify the wmiQuery line so you are choosing everything from the

WIN32_ComputerSystem class. This is seen below.

wmiQuery = "Select * from win32_ComputerSystem"

Chapter 9 WMI Continued 211
4.	 Inside the For Each…Next loop, print out the values for the following properties: Name,
Manufacturer, Model, TotalPhysicalMemory, and Username. To do this, edit the
WScript.Echo lines currently in the loop. This is seen below.

WScript.Echo "name: " & objItem.name

WScript.Echo "Manufacturer: " & objItem.Manufacturer

WScript.Echo "model: " & objItem.model

WScript.Echo "totalPhysicalMemory: " & objItem.totalPhysicalMemory

WScript.Echo "username: " & objItem.username

5.	 Save and run your script. It should print out something similar to the output listed
below if it is run in CScript. If it does not, compare your script to \My Docu­
ments\Microsoft Press\VBScriptSBS\ch09\IsArray.vbs. Your code must be error free
prior to going to the next step.

name: MREDLAPTOP

Manufacturer: TOSHIBA

model: TECRA M3

totalPhysicalMemory: 2146680832

username: NWTRADERS\iammred

6.	 Add an additional WScript.Echo command in your For Each…Next loop. You can easily
do this by copying one of the existing Echo lines and editing both the property name
and the associated string message. Modify the line to use the SystemStartupOptions
property, as seen below:

WScript.Echo "SystemStartupOptions: " & objItem.SystemStartupOptions

7.	 Save and run the script. You will notice it errors out on the line you just added. The error
received is listed below:

Microsoft VBScript runtime error: Type mismatch

8. The easiest way to fix it is to add the Join function to the line of code, as seen below:

WScript.Echo "SystemStartupOptions: " & join(objItem.SystemStartupOptions)

9.	 Add join to the line above the SystemStartupOptions line so that you are trying to join the
Username property, as seen below:

WScript.Echo "username: " & join(objItem.username)

10.	 Save and run the script. You will see it also produces an error:

Microsoft VBScript runtime error: Type mismatch: 'join'

11.	 It is therefore impossible to simply try to join everything together. In trying to solve one
error, we run into another. Use the isArray function to determine if the property is an
array and then use the appropriate line of code. Delete join from the objItem.UserName
line of code. Save and run your script. There should be no errors.

212 Part II Basic Windows Administration
12.	 Add a new line above the SystemStartUpOptions line of code. Use the isArray function to
determine if the property is an array. Encase the code in an If…Then…End If loop, as seen
below:

If IsArray(objItem.SystemStartUpOptions) Then

End If

13.	 Add an Else clause that prints out the property without using a Join function, as seen
below:

Else

WScript.Echo "SystemStartupOptions: " & objItem.SystemStartupOptions

14.	 It is possible that you have multiple startup options specified for your server or worksta­
tion in the Boot.ini file. To present a nicer listing from the script, let’s add the second
parameter for the Join function, which is the character to use as a line separator. Here we
will use a new line, as seen below:

WScript.Echo "SystemStartupOptions: " & join(objItem.SystemStartupOptions, _

VbCrLf)

15.	 Save and run the script. If there are problems, compare it to IsArray.vbs.

Best Practices In the next procedure, we will illustrate an alternate way to connect to
WMI. This can be useful for short, quick scripts. I do not recommend leaving out Option
Explicit, not declaring variables, or using convuluted monikers as a general course. As
they can be difficult to read, hard to modify, and impossible to troubleshoot.

Alternate ways to connect to WMI

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\BlankTemplate.vbs in
Notepad or your favorite script editor. Save the file as YourNameAlternateWMI.vbs.

2.	 On the first line, use Set to assign the object that comes back from GetObject to a variable
named colItems. Use the ExecQuery method to select everything from the
WIN32_LogicalDisk class. This can be on a single line. (The line below is wrapped due to
publishing style constraints. If you type it on a single line, remove the _ when you put it
together.)

Set colItems = GetObject("winmgmts:\\").ExecQuery _

("Select * from win32_logicaldisk")

3.	 To investigate the type of object that is returned by the command, use the TypeName
function and print out the name of the object contained in the colItems variable, as seen
below.

WScript.Echo "colitems is: " & TypeName(colItems)

Chapter 9 WMI Continued 213
4.	 Save and run the script. You will notice it reports colItems is an SWbemObjectSet object.

5.	 On a new line, use For Each…Next to walk through the collection of objects returned in
the first line of the script. Use the variable obj to singularize an item from the collection.
Print out the name property from the WIN32_LogicalDisk class. This is seen below:

For Each obj In colItems

WScript.Echo "Drive name: " & obj.name

Next

6.	 On the next line, use the Get method from SWbemServices to connect to a specific drive,
drive C. To do this, you must identify the key value of the WMI class and supply a value
for the key that represents an individual instance of the class. The WMI object browser
can be used to find the key property, as seen in Figure 9-1. Use objItem to hold the object
that is returned.

Set objItem = GetObject("winmgmts:\\").get _

("win32_logicaldisk.deviceID='c:'")

Figure 9-1 The WMI object browser provides an easy way to identify key properties

7.	 Use the TypeName function and echo out the name of the object contained in the objItem
variable. This is seen below:

WScript.Echo "objItem is: " & TypeName(objItem)

8.	 Save and run the script. You will notice objItem is reported as sWbemObjectEx.

9.	 Use WScript.Echo to print out the size of the C drive. This is seen below.

WScript.Echo "Size of drive " & objItem.size

214 Part II Basic Windows Administration
10. Save and run the script. If it does not perform as expected, compare your script with
AlternateWMI.vbs in the Chapter 9 folder.

Quick Check

Q. Why do you need a moniker for WMI?

A. The WMI moniker gives you the ability to easily connect to WMI.

Q. What construction is required to return property data stored in an array?

A. You need to either specify the element you’re interested in, or simply use the Join
function to give you a string to work with.

Q. What part of the WMI moniker is required?

A. The required part of the WMI moniker is the prefix WinMgmts:.

Q. What are the two optional parts of the WMI moniker?

A. The two optional parts of the WMI moniker are the security settings and the WMI
object path.

Moniker Security Settings
In many cases, the default security settings work just fine for the WMI moniker. In many
example scripts, you will see the line impersonationLevel=impersonate. This line is often not
needed because the default Distributed COM (DCOM) security setting for WMI on Microsoft
Windows 2000, Windows XP, and Windows Server 2003 is set so the impersonation level is
equal to impersonate.

Note When I first started using WMI in my scripting, I noticed numerous scripts had imper­
sonationLevel=impersonate set, and it made me curious. After a lot of searching, I found the
other levels. When I tried to change the security settings, the script failed. The reason? You can­
not specify security settings when running local. They work only when you are connecting
remotely to another computer.

But what does that really mean? Why are there options we would not normally utilize? You
can use four levels of impersonation: Anonymous, Identify, Impersonate, and Delegate. By
default, WMI uses the Impersonate permission, which allows a WMI call to use the credentials
of the caller. When the person calling the WMI script is a domain administrator, the script
runs with domain administrator privileges. You can also use other impersonation levels, as
described in Table 9-1.

Table 9-1 Impersonation Levels

Moniker Meaning Registry value

Anonymous Hides the credentials of the caller. Calls to WMI might fail 1
with this impersonation level.

Chapter 9 WMI Continued 215
Table 9-1 Impersonation Levels

Moniker Meaning Registry value

Identify Allows objects to query the credentials of the caller. Calls to
WMI might fail with this impersonation level.

2

Impersonate Allows objects to use the credentials of the caller. This is the
recommended impersonation level for Scripting application
programming interface (API) for WMI calls.

3

Delegate Allows objects to permit other objects to use the credentials
of the caller. This impersonation will work with Scripting API
for WMI calls but might constitute an unnecessary security
risk.

4

If you decide to specify the impersonation level of the script, the code would look like the
following:

Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate}")

Because Impersonate is the default impersonation level for WMI, the addition of the curly
braces and impersonationLevel=impersonate code is redundant. If you want to keep your moni­
ker nice and clean, and yet you feel the need to modify the impersonation level, you can do
this easily by defining the impersonation level of the SWbemSecurity object. In practice, your
code might look like the following:

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

objWMIService.Security_.impersonationLevel = 4

In this code, the first line contains the normal moniker to make the connection to WMI. You
use strComputer and wmiNS to specify target computers and the target namespace, respec­
tively. Because you haven’t specified an impersonation level, you’re using the default Imper­
sonate security setting. On the next line, you use the handle that came back from the
GetObject command that was assigned to objWMIService, and you define ImpersonationLevel to
be equal to 4. (Impersonation values are listed in Table 9-1.) Obviously, you could define a
constant and set it to a value of 4 and then substitute the constant value for 4 in the script.
ImpersonationLevel is a property of Security_. Security_ is a property of the SWbemSecurity
object. The SWbemSecurity object is used to read or set security settings for other WMI objects
such as SWbemServices, which is actually the object created when you use GetObject and the
WMI moniker.

WbemPrivilege Has Its Privileges

To add elevated privileges, you need to add a privilege string in the space immediately follow­
ing the impersonation level. These privilege strings correspond to the WbemPrivilegeEnum
constants, which are documented in the Platform SDK. Some of the more useful privilege
strings for network administrators are listed in Table 9-2. (There are 26 defined privileges in

216 Part II Basic Windows Administration
the Platform SDK, most of which are of interest only to developers writing low-level WMI
applications.)

Table 9-2 Privilege Strings

Privilege Value Meaning

SeCreateTokenPrivilege 1 Required to create a primary token.

SeLockMemoryPrivilege 3 Required to lock physical pages in memory.

SeMachineAccountPrivilege 5 Required to create a computer account.

SeSecurityPrivilege 7 Required to perform a number of security-related
functions, such as controlling and viewing audit
messages. This privilege identifies its holder as a
security operator.

SeTakeOwnershipPrivilege 8 Required to take ownership of an object without being
granted discretionary access. This privilege allows the
owner value to be set only to those values that the
holder might legitimately assign as the owner of an
object.

SeSystemTimePrivilege 11 Required to modify the system time.

SeCreatePagefilePrivilege 14 Required to create a paging file.

SeShutdownPrivilege 18 Required to shut down a local system.

SeRemoteShutdownPrivilege 23 Required to shut down a system using a network
request.

SeEnableDelegationPrivilege 26 Required to enable computer and user accounts to
be trusted for delegation.

As you can see from Table 9-2, some of these privileges are rather intriguing. This being the
case, how do you request them? Well, this is where your work gets a little interesting. If you’re
requesting the privilege in a moniker string, you use the privilege string listed in Table 9-2, but
you have to drop the Se part and the Privilege part of the string. For example, if you want to
request the SeShutdownPrivilege privilege in a moniker, you would specify the privilege as Shut­
down, as illustrated in the following WMI connection string:

Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate, (Shutdown)}")

Querying the security event log

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates\WMITem­
plate.vbs script in Notepad or another script editor and save it as YourNameReadSecuri­
tyEventLog.vbs.

2.	 Declare a variable called dteDate to hold the desired date for your event log query. Also
declare a variable called IntEvent to hold the event ID you wish to query. The two lines of
code that do this are seen below:

Dim IntEvent 'event code to look for

Dim dteDate 'the date to search from in log

Chapter 9 WMI Continued 217
3.	 Use the dateSerial function to convert three numbers into a date formatted number. This
will be the date you wish to use as the basis of your query into the security event log. To
limit the amount of information returned, use yesterday’s date for the query. Assign the
date that is returned from the function to the variable dteDate, as seen below:

dteDate = DateSerial(2006,04,22)

4.	 Assign an event ID to the IntEvent variable. I used 576, which indicates a privilege esca­
lation. An example of event 576 is seen in Figure 9-2.

IntEvent = "576" 'event code

Figure 9-2 Privilege escalation event 576 recorded in event log

5.	 Edit the WMI query so that you are choosing everything from the WIN32_ NTLogEvent
class. Use the IntEvent variable to assign value to the EventCode property in the Where
clause, and specify the “security” for the LogFile property. Use the funUTC function to
convert the dteDate variable into a Coordinated Universal Time (UTC) formatted date
type you can use with the TimeGenerated property to reduce the number of records
returned from the script. The completed WMI query is listed below:

wmiQuery = "SELECT * FROM Win32_NTLogEvent WHERE EventCode = " & _

IntEvent & " and LogFile = 'security' and timegenerated > " & _

funUTC(dteDate)

Warning If you do not enclose the name of the log file in the WMI query within a
single set of quotation marks, your query will fail.

218 Part II Basic Windows Administration
6.	 Under the line that connects to WMI by using the moniker, create a security privilege
object and use the addASstring method to add the SeSecurityPrivilege privilege to your
script. This is required to allow you to read from the security log. The code below per­
forms this task.

objWMIService.security_.Privileges.addASstring "SeSecurityPrivilege"

7.	 In the Output section of the script, edit the existing WScript.Echo commands to echo out
the TimeGenerated, Message, EventCode, and CategoryString properties from the
WIN32_NTLogEvent class.

WScript.Echo "TimeGenerated: " & objItem.TimeGenerated

WScript.Echo "message: " & objItem.message

WScript.Echo "EventCode: " & objItem.EventCode

WScript.Echo "CategoryString : " & objItem.CategoryString

8.	 Delete the two remaining WScript.Echo commands.

9.	 Turn off On Error Resume Next.

10.	 Copy the function contained in \My Documents\Microsoft Press\VBScriptSBS
\Utilities\FunConvertUTC.vbs to the bottom of your script. You will need to modify it
just slightly, because the date value needs to be encased in single quotation marks. Add
a "'"& in front of the dateTime variable. Also add &"'" at the end of the dateTime variable.
The completed function is listed below.

Function funUTC(mydate)

Dim dateTime

Set dateTime = CreateObject("WbemScripting.SWbemDateTime")

dateTime.SetVarDate(mydate)

funUTC = "'" & dateTime & "'"

End Function

11.	 Save and run the script by using CScript. Your output will probably look something like
the following:

TimeGenerated: 20060423193754.000000-180

message: Special privileges assigned to new logon:

User Name: NETWORK SERVICE

Domain: NT AUTHORITY

Logon ID: (0x0,0x3E4)

Privileges: SeAuditPrivilege

SeAssignPrimaryTokenPrivilege

SeChangeNotifyPrivilege

12.	 Notice the TimeGenerated field is in UTC time format and is therefore difficult to read. To
correct this, copy the \My Documents\Microsoft Press\VBScriptSBS\Utilities\Fun­

Chapter 9 WMI Continued 219
TimeFunction.vbs script and paste it at the bottom of your script. The function looks
like the following:

Function FunTime(wmiTime)

Dim objSWbemDateTime 'holds an swbemDateTime object. Used to translate Time

Set objSWbemDateTime = CreateObject("WbemScripting.SWbemDateTime")

objSWbemDateTime.Value = wmiTime

FunTime = objSWbemDateTime.GetVarDate

End Function

13.	 To clean up the output from the TimeGenerated field in the Output section of your script,
modify the existing line to call the function to translate objItem.TimeGenerated. This is
seen below:

WScript.Echo "TimeGenerated: " & FunTime(objItem.TimeGenerated)

14.	 Save and run your script by using CScript. You will notice that the output now has a
“normal” date and time format. If your script does not appear to run properly, compare
your script with \My Documents\Microsoft Press\VBScriptSBS\ch09\ReadSecuri­
tyEventLog.vbs. You may also want to modify the date used in the query by editing the
value of dteDate.

Adding reporting information

1.	 Open the YourNameReadSecurityEventLog.vbs script in Notepad or another script edi­
tor and save it as YourNameReadSecurityEventLogHeader.vbs.

2.	 In the Header section of your script, declare two variables, startTime and endTime, that
will be used to hold the return value from the Timer function.

Dim startTime, endTime 'used with timer Function

3.	 In the Reference section of the script, use the Timer function to assign a value to the start-
Time variable, as seen below:

startTime = Timer

4.	 Under the For Each…Next loop, use the Timer function to assign a value to the endTime
variable. On the following line, echo out the results of subtracting startTime from end-
Time, as seen below:

endTime = Timer

WScript.Echo "It took " & endTime-startTime

5.	 Copy the function contained in \My Documents\Microsoft Press\VBScriptSBS\Utilities
\funLine2.vbs to the bottom of your script. This function will look like the following:

Function funLine(strIn)

funLine = Len(strIN)+1

funLine = strIN & VbCrLf & String(funLine,"=")

End Function

220 Part II Basic Windows Administration
6.	 Under the ExecQuery line in the Worker section of your script, echo out the wmiQuery
value. Then use the funLine function to underline some code that tells how many items
are found as a result of your WMI query. The code to do this is seen below:

WScript.Echo wmiQuery & VbCrLf & funLine("There are " & _

colItems.Count & " Events related to eventCode " & IntEvent) & _

vbNewLine

7.	 Save and run your script in CScript. If it does not run, then compare the results with the
\My Documents\Microsoft Press\VBScriptSBS\ch09\ReadSecurityEventLog-
Header.vbs. You may also want to modify the date used to perform the query by editing
the value of dteDate.

Using the Default WMI Moniker Step-by-Step Exercises
In this section, you will practice using the default WMI moniker. To do this, you write a cute
little script that enumerates all the programs listed in the Add/Remove Programs dialog box,
available from Control Panel.

1.	 Open Notepad or your favorite script editor.

2.	 On the first line, type Option Explicit to ensure you declare all variables used in the
script.

3.	 Declare the following variables: objWMIService, colItems, and objItem. Add comments fol­
lowing each declaration to specify what each variable is used for.

4.	 Set objWMIService equal to what comes back from the GetObject method when used in
conjunction with the WMI moniker. Your code will look like the following:

Set objWMIService = GetObject("winmgmts:\\")

5.	 Set colItems equal to what comes back from issuing the WQL statement "Select * from
WIN32_Product" as you use the ExecQuery method. Your code will look like the
following:

Set colItems = objWMIService.ExecQuery("SELECT * FROM WIN32_Product")

6.	 Use a For Each...Next loop to iterate through colItems as you look for the following
properties of the AddRemovePrograms object: DisplayName, Publisher, and Version. Use
the variable objItem to assist you in iterating through the collection. Make sure you close
out the For Each...Next loop with the Next command. Your code could will look like the
following:

For Each objItem In colItems

WScript.Echo "DisplayName: " & objItem.Name

WScript.Echo "Publisher: " & objItem.Vendor

WScript.Echo "Version: " & objItem.Version

WScript.Echo

Next

Chapter 9 WMI Continued 221
7.	 Save your file as YourNameDefaultMoniker.vbs.

8.	 Make sure you run this program in CScript by going to a command prompt and typing
cscript pathtoyourfile\yourNameDefaultMoniker.vbs. (More than likely, you have a
lot of programs in Add/Remove Programs. If you run the program by double-clicking it,
and it runs under WScript, you will have numerous pop-up dialog boxes to close unless
you open Task Manager and kill the WScript.exe process.) Depending on how many
programs you have installed, it will take several minutes for your script to run.

9.	 EXTRA CREDIT: Add a message to the beginning of your script letting the user know
the script is beginning. Also add a message letting the user know when the script is
finished. Then tell the user how long the script ran. Compare your results with
\My Documents\Microsoft Press\VBScriptSBS\StepByStep\DefaultMonikerExtra.vbs.

Invoking the WMI Moniker to Display the Machine Boot
Configuration

In this section, you explore an alternate method of invoking the WMI moniker. In so doing,
you write a WMI script that displays the boot configuration of a machine.

1.	 Open Notepad or your favorite script editor.

2.	 On the first line, type Option Explicit to ensure you declare all variables used in the
script.

3.	 Declare three variables. The variables are objWMIService, colItems, and objItem.

4.	 Set objWMIService equal to what comes back from the GetObject method when used in
conjunction with the WMI moniker. In addition, define an impersonation level of Anon­
ymous. Your code will look like the following:

Set objWMIService = GetObject("winmgmts:{impersonationLevel=anonymous}")

5.	 Set colItems equal to what comes back from issuing the WQL statement "Select * from
Win32_BootConfiguration" as you use the ExecQuery method. Your code will look like the
following:

Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_BootConfiguration")

6.	 Use a For Each...Next loop to iterate through colItems as you look for the following prop­
erties of the Win3_BootConfiguration object: BootDirectory, Caption, ConfigurationPath,
Description, LastDrive, Name, ScratchDirectory, SettingID, and TempDirectory. Use the
variable objItem to assist you in iterating through the collection. Make sure you close out
the For Each...Next loop with the Next command. Your code will look like the following:

For Each objItem In colItems

WScript.Echo "BootDirectory: " & objItem.BootDirectory

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "ConfigurationPath: " & objItem.ConfigurationPath

WScript.Echo "Description: " & objItem.Description

222 Part II Basic Windows Administration
WScript.Echo "LastDrive: " & objItem.LastDrive

WScript.Echo "Name: " & objItem.Name

WScript.Echo "ScratchDirectory: " & objItem.ScratchDirectory

WScript.Echo "SettingID: " & objItem.SettingID

WScript.Echo "TempDirectory: " & objItem.TempDirectory

WScript.Echo

Next

7.	 Save your work as BootConfigA.vbs.

8.	 Use CScript to run the script. It will fail! Why does the script fail? Hint: Check the imper­
sonation level.

9.	 Change the line containing the WMI moniker. Set the impersonation level to Identify.

10.	 Save your work as BootConfigB.vbs.

11.	 Use CScript to run the script. It will fail!

12.	 Why does the script fail? Hint: Check the impersonation level.

13.	 Change the line containing the WMI moniker. Set the impersonation level to
Impersonate.

14.	 Save your work as BootConfigC.vbs.

15.	 Use CScript to run the script. It works just fine. Why does the script work?

16.	 Change the line containing the WMI moniker. Set the impersonation level to Delegate.

17.	 Save your work as BootConfigD.vbs.

18.	 Use CScript to run the script. It works just fine. What does this tell you about using the
different impersonation levels on Windows Server 2003?

Including Additional Security Permissions
In this section, you will modify the WMI moniker to include the specification of additional
security permissions. You will use a script that displays information about the display.

1.	 Open Notepad or a different script editor.

2.	 On the first line, type Option Explicit to ensure variables are declared and spelled
correctly.

3.	 On the next line, declare the following variables: objWMIService, colItems, and objItem.
These are the same variables you used in previous scripts in this chapter.

4.	 Set objWMIService equal to what comes back from the GetObject method when used in
conjunction with the WMI moniker. In addition, you want to define an impersonation
level of Impersonate as well as the special debug privilege. Your code will look like the
following:

Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate, (debug)}")

Chapter 9 WMI Continued 223
5.	 Set colItems equal to what comes back from issuing the WQL statement "Select * from
Win32_DisplayConfiguration" as you use the ExecQuery method. Your code will look like
the following:

Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_DisplayConfiguration")

Use a For Each...Next loop to iterate through colItems as you look for the following
properties of the Win32_DisplayConfiguration object: BitsPerPel, Caption, Description,
DeviceName, DisplayFlags, DisplayFrequency, DriverVersion, LogPixels, PelsHeight,
PelsWidth, SettingID, and SpecificationVersion. Use the variable objItem to assist you in
iterating through the collection. Make sure you close out the For Each...Next loop with
the Next command. Your code will look like the following:

For Each objItem in colItems

WScript.Echo "BitsPerPel: " & objItem.BitsPerPel

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "Description: " & objItem.Description

WScript.Echo "DeviceName: " & objItem.DeviceName

WScript.Echo "DisplayFlags: " & objItem.DisplayFlags

WScript.Echo "DisplayFrequency: " & objItem.DisplayFrequency

WScript.Echo "DriverVersion: " & objItem.DriverVersion

WScript.Echo "LogPixels: " & objItem.LogPixels

WScript.Echo "PelsHeight: " & objItem.PelsHeight

WScript.Echo "PelsWidth: " & objItem.PelsWidth

WScript.Echo "SettingID: " & objItem.SettingID

WScript.Echo "SpecificationVersion: " & objItem.SpecificationVersion

Next

6.	 Save your program as Display.vbs.

7.	 Modify the WMI connection string to include not only the debug privilege, but also the
shutdown privilege. Your code will look like the following:

Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate, (debug, shutd

own) }")

8.	 Modify the WMI connection string to indicate that the WMI connection should attach
to the local host machine. This WMI connection string is starting to be rather long, so
break the line after you specify the impersonation level. Your code will look like the fol­
lowing:

Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate," _

& "(debug, shutdown)}\\localhost")

9.	 Save your work.

10.	 Modify the connection in the preceding string to indicate that you want WMI to make a
connection to the \root\cimv2 namespace on the computer called localhost. Your code
will look like the following:

Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate," _

& "(debug, shutdown)}\\localhost\root\cimV2")

11.	 Save your work and then use CScript to run the script.

224 Part II Basic Windows Administration
One Step Further: Using Win32_Environment and
VBScript to Learn About WMI

In this section, you use Win32_Environment and VBScript to learn about both WMI and the
environment settings on your server.

1.	 Open Notead or some other script editor.

2.	 On the first line, type Option Explicit.

3.	 Use the Dim command to declare the following variables: objWMIService, colItems,
objItem, wmiQuery, and strComputer.

4.	 Use WScript.Echo and the Now function to indicate the script is beginning its run.

5.	 Assign the value of "." to the variable strComputer.

6.	 Assign the query "Select * from Win32_Environment" to the variable wmiQuery.

7.	 Set objWMIService equal to the handle that comes back from the GetObject function with
the winmgmts: moniker. Incorporate the variable strComputer to tell WMI which com­
puter to use to execute the connection.

8.	 Use the colItems variable to hold the object returned from using the execQuery method of
the SWbemServicesEx object. This is seen below:

Set colItems = objWMIService.ExecQuery(wmiQuery)

9.	 Use a For Each...Next loop to iterate through the collection called colItems. For each
objItem in colItems, echo out the following properties: Caption, Description, InstallDate,
Name, Status, SystemVariable, UserName, and VariableValue.

10.	 Close out the For Each...Next loop.

11.	 Echo a line indicating the script is finished and use the Now function to print out the
time.

12.	 Save your work as SysEnvironment.vbs.

13.	 Run the script in CScript.

Chapter 9 WMI Continued 225
Chapter 9 Quick Reference

To Do This

Simplify connecting into WMI, while using Use the WMI moniker
default security permissions

Control security when making a remote Specify the impersonation levels in your script
connection

Allow a script to use the credentials of the Use the Impersonate impersonation level
person launching the script

Allow a script to shut down the server Use the shutdown privilege

Chapter 10

Querying WMI

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the fol­
lowing concepts from earlier chapters:

■	 Creating the WMI moniker

■	 Implementing the For…Next construction

■	 Navigating the WMI namespace

■	 Implementing GetObject

■	 Implementing the ExecQuery method

After completing this chapter, you will be able to:

■	 Return all properties from all instances of a class

■	 Return some properties from all instances of a class

■	 Return all properties from some instances of a class

■	 Return some properties from some instances of a class

Tell Me Everything About Everything!
When novices first write Windows Management Instrumentation (WMI) scripts, they nearly
all begin by asking for every property about all instances of a class that are present on a par­
ticular system. (This is also referred to as the infamous "Select * query".) This approach can
often return an overwhelming amount of data, particularly when you are querying a class
such as installed software, or processes and threads. Rarely would one need to have so much
data. Typically, when looking for installed software, you’re looking for information about a
particular software package.

There are, however, several occasions when I want to use the “tell me everything about all
instances of a particular class” query:

■	 During development of a script to see representative data

■	 When troubleshooting a more directed query (for example, when I’m possibly trying to
filter on a field that does not exist)
227

228 Part II Basic Windows Administration
■ When the returned data is so small that being more precise doesn’t make sense

Just the Steps To return all information from all instances

1. Make a connection to WMI.

2. Use the Select statement to choose everything: Select *.

3. Use the From statement to indicate the class from which you wish to retrieve data. For
example, From Win32_Share.

In the next script, you make a connection to the default namespace in WMI and return all the
information about all the shares on a local machine. This is actually good practice, because in
the past, numerous worms propagated via unsecured shares, and you might have unused shares
around—a user might create a share for a friend and then forget to delete it. In the script that fol­
lows, called ListShares.vbs, all the information about shares present on the machine is reported.

ListShares.vbs
Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_Share"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems

WScript.Echo "AccessMask: " & objItem.AccessMask

WScript.Echo "AllowMaximum: " & objItem.AllowMaximum

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "Description: " & objItem.Description

WScript.Echo "InstallDate: " & objItem.InstallDate

WScript.Echo "MaximumAllowed: " & objItem.MaximumAllowed

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Path: " & objItem.Path

WScript.Echo "Status: " & objItem.Status

WScript.Echo "Type: " & objItem.Type

WScript.Echo

Next

Header Information

The Header information section of ListShares.vbs contains all the standard information.
Option Explicit forces the declaration of all variables. This is followed by On Error Resume Next
to make sure the script goes to the next line of code if it encounters an error.

Chapter 10 Querying WMI 229
Note In Chapter 1, “Starting from Scratch,” we talked about the pros and cons of using On
Error Resume Next. Most of the time, when you are working with WMI, you are displaying
property values, which is a harmless activity. Using On Error Resume Next helps the script to
run, even when the script encounters an error. This is largely a good thing with WMI.

These two standard lines are followed by the same variable names declared in previous WMI
scripts: strComputer, wmiNS, wmiQuery, objWMIService, colItems, and objItem. The variable str-
Computer defines the target computer, wmiNS specifies the target WMI namespace, wmiQuery
holds the value of the query to be executed, and colItems holds the collection of items that are
returned by the query. The variable objItem is used by the For Each…Next loop to iterate
through the collection.

Reference Information

The Reference information section of the script is used to assign values to five of the six vari­
ables. The variable strComputer is assigned the value of ".", which indicates the script will run
against the local computer. The variable wmiNS is assigned to \root\cimv2, which is the default
WMI namespace. The variable wmiQuery is set to "Select * from Win32_Share". This is the query
you want to execute against the default WMI namespace. Select * tells WMI that you want to
retrieve all properties from the Win32_Share object. Note that this query doesn’t display all the
properties; it simply displays all the properties from the Win32_Share object. What you do
with the returned data depends on your current needs. Unless you need it, returning all the
data might not be a very efficient use of networking resources. It is, however, very easy to con­
struct such a query.

The variable objWMIService is used to connect to WMI, and it uses the WMI moniker to do so.
Two variables assist in this operation: strComputer and wmiNS. The colItems variable holds the
handle that comes back from the ExecQuery method that is used to execute your WMI query
against the Win32_Share class.

Worker and Output Information

The Worker information and Output information sections of the ListShare.vbs script are
combined, and the script simply uses WScript.Echo to write the various properties and their
associated values to the command line (if run in CScript) or to a pop-up dialog box (if run in
WScript, which is not a really good idea when you have numerous shares). The most conve­
nient listing of all the available properties for a particular class is contained in the Platform
SDK. A quick search for Win32_Share reveals the properties listed in Table 10-1.

Table 10-1 Win32_Share Properties

Data type Property Meaning

Boolean AllowMaximum Allow maximum number of connections? True or False.

230 Part II Basic Windows Administration
Table 10-1 Win32_Share Properties

Data type Property Meaning

string Caption Short, one-line description.

string

datetime

Description

InstallDate

Description.

When the share was created (optional).

uint32 MaximumAllowed Number of concurrent connections allowed. Only valid
when AllowMaximum is set to False.

string Name Share name.

string Path Physical path to the share.

string Status Current status of the share: Degraded, OK, or Failed.

uint32 Type Type of resource shared: disk, file, printer, and so on.

Quick Check

Q. What is the syntax for a query that returns all properties of a given object?

A. Select * returns all properties of a given object.

Q. What is one reason for using Select * instead of a more directed query?

A. In troubleshooting, Select * is useful because it returns any available data. In addition,
Select * is useful in trying to characterize the data that might be returned from a query.

Selective Data from All Instances
The next level of sophistication (from using Select *) is to return only the properties you are
interested in. This is a more efficient strategy. For instance, in the previous example, you did
a Select * query and returned a lot of data you weren’t necessarily interested in. Suppose you
wanted to know only which shares are on each machine. With a simple change to the
wmiQuery variable and by deleting a few WScript.Echo commands, you can modify your script
to get exactly what you want.

Just the Steps To select specific data

1. Make a connection to WMI.

2. Use the Select statement to choose the specific property you are interested in (for exam­
ple, Select name).

3. Use the From statement to indicate the class from which you want to retrieve data (for
example, From Win32_Share).

Only two small changes in the ListShares.vbs script are required to enable you to garner spe­
cific data via the WMI script. In place of the asterisk in the Select statement assigned in the Ref­
erence information section of the script, you substitute the property you want. In this case,
only the name of the shares is required.

Chapter 10 Querying WMI 231
The second change is to eliminate all unused properties from the Output section. This is very
important because the script could fail if you try to echo out a property that is not selected in
the Select statement. I said it could fail as opposed to would fail, because if you include On Error
Resume Next, the script will work. If you don’t include this error handling line of code, the
script fails with an “Object does not support this property or method” error. Because this
error message is rather confusing, you should be able to recognize it! It is important that you
select each item for which you want to return information. In this way, WMI Query Language
(WQL) acts just like Structured Query Language (SQL). If you don’t select a property, you
can’t do anything with the property, because to the program, the object doesn’t exist. Here is
the modified ListName_Only_AllShares.vbs script:

ListName_Only_AllShares.vbs
Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select Name from win32_Share"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems

WScript.Echo "Name: " & objItem.Name

Next

Selecting Multiple Properties
If you’re interested in only a certain number of properties, you can use Select to specify that. All
you have to do is separate the properties by a comma. Suppose you run the preceding script
and find a number of undocumented shares on one of the servers—you might want a little bit
more information such as the path to the share and how many people are allowed to connect
to it. By default, when a share is created, the “maximum allowed” bit is set. This basically says
anyone who has rights to the share can connect. This can be a problem, because if too many
people connect to a share, they can degrade the performance of the server. To preclude such
an eventuality, I always specify a maximum number of connections to the server.

Note I occasionally see people asking whether spaces or namecase in the property list
matters. In fact, when I first started writing scripts and they failed, I often modified spacing and
capitalization in feeble attempts to make the script work. Spacing and capitalization do not
matter for WMI properties.

232 Part II Basic Windows Administration
The revised script, called ListName_Path_Max_Shares.vbs, now looks like the following:

ListName_Path_Max_Shares.vbs
Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select path, allowMaximum from win32_Share"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Path: " & objItem.path

WScript.Echo "AllowMaximum: " & objItem.AllowMaximum

WScript.Echo vbNewLine

Next

The technique of specifying only the properties you’re interested in can be used with any of
the supported properties from Win32_Share listed in Table 10-1. Interestingly enough, you
don’t really need to include the Name property on the Select line, because for Win32_Share,
Name is the key property. This is seen in Figure 10-1.

Figure 10-1 Key properties are easily identified via the WMI CIM Studio tool

Chapter 10 Querying WMI 233
Note The WMI CIM Studio tool is included with the WMI Admin Tools. These can be
installed from \My Documents\Microsoft Press\VBScriptSBS\Resources\WMITools.exe.

The key property in WMI works just like the key column in a database: It is used to uniquely
identify a row, and it is often the column or property that is indexed to make searching easier.
This is just like the key to a house or to a car. The key provides entry into the house or car so
that you can access the property inside. The key property is always returned, even when it
isn’t specifically mentioned on the Select line.

To list running processes

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates
\wmiTemplate.vbs script in Microsoft Notepad or some other script editor and save it as
YourNameListRunningProcesses.vbs.

2.	 Declare two new variables, strProperties and strValues. One will be used to hold the spe­
cific list of properties you will request. The other will hold the values that come back
from the query. The code to do this looks like the following:

Dim strProperties 'properties to choose

Dim strValues 'string of wmi values

3.	 Look up WIN32_process in the Platform SDK and choose some interesting properties. Assign
them to the strProperties variable as a string. My code to do this looks like the following:

strProperties = "name,processID,pageFaults,WorkingSetSize"

4.	 Modify the wmiQuery variable so that it selects only the properties specified in the str-
Properties variable from WIN32_process, but only if the process is not equal to 0, which is
the system idle process. The code to do this looks like the following:

wmiQuery = "Select " & strProperties & " from win32_process" &_

" where processID <>0"

5.	 Inside the For Each…Next loop, delete all the WScript.Echo lines. The new For Each…Next
loop looks like the following:

For Each objItem in colItems

Next

6.	 To reduce typing, you can use With and End With to allow us to refer to a series of prop­
erties on the object objItem without having to re-qualify the name objItem inside the For
Each…Next loop. This means that every property will now use the qualifier objItem. This
is seen below:

With objItem

End With

234 Part II Basic Windows Administration
7.	 Use the strValues variable to hold the output from retrieving the values from each
instance in the collection. We are producing a csv output, and therefore we will place
commas between each property value. The completed code is seen below:

strValues = .name & "," & .processID & "," &_

.PageFaults & "," & .WorkingSetSize

8.	 After the End With statement, but before the Next command, print out the value of str-
Values by using WScript.Echo. This will be a debug statement, and later we will turn it off.
The command looks like the following:

WScript.Echo strValues

9.	 Save and run your script in CScript. The output will look something like the (trimmed)
output listed below. If your script does not work properly, compare it to the \My Docu­
ments\Microsoft Press\VBScriptSBS\ch10\ListRunningProcesses.vbs script.

System,4,11275,225280

smss.exe,732,211,380928

csrss.exe,932,42425,4616192

winlogon.exe,956,16377,4464640

Adding a logging subroutine

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch10\ListRunningPro­

cesses.vbs script and save it as YourNameLoggedRunningProcesses.vbs.

2.	 Add a subroutine to be used to write out to a log file. This subroutine will accept one
input parameter called strIN. The code to do this looks like the following:

Sub subText(strIN)

End sub

3.	 At the top of the subroutine, add variables to hold filesystemobject, the file object, the
wshShell object, and the path to the desktop and the name of the log file. I used the vari­
ables listed below.

Dim objFSO 'the filesystemobject

Dim objFile 'file object

Dim objShell 'wshshell object

Dim strPath 'path to desktop

Dim strFile 'log file name

4.	 Define a constant ForAppending and set it to 8. Define an additional constant called cre­
ateFile, and set it equal to True. This is seen below:

Const ForAppending = 8

Const createFile = True

5.	 Below the subText subroutine, define a function called funfix that uses an input called
strIN. Use this function to add a backslash ("\") to the beginning of the strIN parameter.
Assign it back to the funfix function, as seen below:

Chapter 10 Querying WMI 235
Function funfix (strIN)

funfix = "\" & strIN

End Function

6.	 Under the createFile constant in the subText subroutine, use the file name logProps.csv
and assign it to the strFile variable. Use the funfix function to prepend a backslash to the
file name. This is seen below.

strFile = funfix("logProps.csv")

7.	 Create an instance of the wshShell object and assign the object that comes back from the
CreateObject command to the variable objShell, as seen below:

Set objShell = CreateObject("WScript.Shell")

8.	 Create an instance of FileSystemObject and assign the object that is returned to the

objFSO variable, as seen below:

Set objFSO = CreateObject("Scripting.FileSystemObject")

9.	 Use the SpecialFolders property of the wshShell object to retrieve the path to the desk­
top. Assign the path to the strPath variable. The code to do this is seen below:

strPath = objShell.SpecialFolders("desktop")

10.	 Use the strPath variable to build up a complete path to the log file. Use strPath and con­
catenate it with the strFile variable, as seen below:

strFile = strPath & strFile

11.	 Use the OpenTextFile method from the file system object to open the strFile file and
append to it. If the file does not exist, create the file. Assign testStreamObject, which is
returned to the objFile variable, as seen below:

Set objFile = objFSO.OpenTextFile(strFile,ForAppending,createFile)

12.	 Once you have a text stream object, you can use the WriteLine method to write the data
contained in the strIN variable to the file, as seen below:

objFile.WriteLine (strIN)

13.	 In the main script, just under the line that defines the WMI query, call the subText sub­
routine, and pass it the contents of the strProperties variable. This will add a column
header to the text output. The code to do this is seen below:

subText(strProperties)

14.	 In the main script, just under the end with statement, call the subText subroutine and
pass the contents of the strValues variable. This code is seen below:

subText(strValues)

236 Part II Basic Windows Administration
15.	 The output will be a .csv file, which when double-clicked will open in Microsoft Excel if
you have the Excel application installed. If you do have Excel installed, then the output
will look like Figure 10-2.

16.	 Save and run the script. LogProps.csv should be created on the desktop. If it is not, com­
pare your script with \My Documents\Microsoft Press\VBScriptSBS\ch10\LoggedRun­
ningProcesses.vbs.

Figure 10-2 By default, a .csv file opens in Microsoft Office Excel

Quick Check

Q. To select specific properties from an object, what do you need to do on the Select line?

A. You need to separate the specific properties of an object with a comma on the Select line
of the ExecQuery method.

Q. To avoid error messages, what must be done when selecting individual properties on
the Select line?

A. Errors can be avoided if you make sure each property used is specified in the Select line.
For example, the WMI query is just like a paper bag that gets filled with items that are
picked up by using the Select statement. If you do not put something in the paper bag,
you cannot pull anything out of the bag. In the same manner, if you do not “select” a
property, you cannot later print or sort on that property. This is exactly the way that a SQL
Select statement works.

Chapter 10 Querying WMI 237
Q. What can you check for in your script if it fails with an “object does not support this
method or property” error?

A. If you are getting “object does not support this method or property” error messages, you
might want to ensure you have referenced the property in your Select statement prior to
trying to work with it in an Output section.

Choosing Specific Instances
In many situations, you will want to limit the data you return to a specific instance of that class
in the data set. If you go back to your query and add a Where clause to the Select statement,
you’ll be able to greatly reduce the amount of information returned by the query. Notice that
in the value associated with the WMI query, you added a dependency that indicated you
wanted only information with share name C$. This value is not case-sensitive, but it must be
surrounded with single quotation marks, as you can see in the wmiQuery string in the follow­
ing script. These single quotation marks are important because they tell WMI that the value is
a string value and not some other programmatic item. Because the addition of the Where state­
ment was the only thing you really added to the ListShares.vbs script, we’re not going to go
into a long discussion of the ListSpecificShares.vbs script.

ListSpecificShares.vbs
Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select path, allowMaximum from win32_Share" &_

" where name = 'C$'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Path: " & objItem.path

WScript.Echo "AllowMaximum: " & objItem.AllowMaximum

Next

Just the Steps To limit specific data

1. Make a connection to WMI.

238 Part II Basic Windows Administration
2. Use the Select statement to choose the specific property you are interested in (for exam­
ple, Select name).

3. Use the From statement to indicate the class from which you want to retrieve data (for
example, From Win32_Share).

4. Add a Where clause to further limit the data set that is returned. Make sure the proper­
ties specified in the Where clause are first mentioned in the Select statement (for exam­
ple, where name).

5. Add an evaluation operator. You can use the equal sign, or the less than or greater than
symbols (for example, where name = 'C$').

Using an Operator
One of the good things you can do is use greater than and less than operators in your evalua­
tion clause. You might wonder what is so good about greater than. It makes working with
alphabetic characters and numeric characters easy. If you work on a server that hosts home
directories for users (which are often named after their user names), you can easily produce a
list of all home directories from the letters T through Z by using the > S expression. This is
illustrated in the ListSpecificGreaterThanShares.vbs script.

ListSpecificGreaterThanShares.vbs
Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select Name, path, allowMaximum from win32_Share where name > 's'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Path: " & objItem.path

WScript.Echo "AllowMaximum: " & objItem.AllowMaximum

WScript.Echo VbCrLf

Next

There are many other available operators in Microsoft Visual Basic, Scripting Edition
(VBScript) as well. These operators are listed in Table 10-2.

Table 10-2 VBScript Operators

Operator Description

= Equal to

Chapter 10 Querying WMI 239
Table 10-2 VBScript Operators

< Less than

Operator Description

> Greater than

<= Less than or equal to

>= Greater than or equal to

!= Not equal to

<> Not equal to (both != and <> mean not equal to)

Identifying service accounts

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates\wmiTemplate.vbs
script and save it as YourNameServiceAccount.vbs.

2.	 Modify the WMI query to select the start name and the started status from the
WIN32_service WMI class. But only do this if the name used to start the service is not
equal to localSystem. This query is seen below.

wmiQuery = "Select StartName, started from win32_service" &_

" where startName <> 'localSystem'"

3.	 Inside the For Each…Next loop, delete all the WScript.Echo commands except for one.

4.	 Modify the output to print out the name of the service, the name used to start the ser­
vice, and the status of the service. Use the intrinsic constant VbCrLf to make a new line.
Use intrinsic constant vbTab to tab between properties. This code is seen below:

WScript.Echo objItem.name, VbCrLf & vbTab &_

objItem.StartName & vbTab & "Running: " & objItem.Started

5.	 Save and run the script by using CScript. The output will look similar to the following
printout.

Alerter

NT AUTHORITY\LocalService Running: False

ALG

NT AUTHORITY\LocalService Running: False

aspnet_state

NT AUTHORITY\NetworkService Running: False

6.	 If your script does not run as expected, compare it to the \My Documents\Microsoft
Press\VBScriptSBS\ch10\ServiceAccount.vbs script.

Logging the service accounts

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch10\ServiceAccount.vbs
script and save it as YourNameServiceAccountLogged.vbs.

2.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch10\LoggedRunning

Processes.vbs script and copy the subText subroutine, as well as the funfix function.

240 Part II Basic Windows Administration
Paste both of these to the bottom of your script. The code you will copy looks like the
following:

' **** subs below ****

Sub subText(strIN)

Dim objFSO 'the filesystemobject

Dim objFile 'file object

Dim objShell 'wshshell object

Dim strPath 'path to desktop

Dim strFile 'log file name

Const ForAppending = 8

Const CreateFile = True

strFile = funfix("logProps.csv") 'adds \ to file name

Set objShell = CreateObject("WScript.Shell")

Set objFSO = CreateObject("Scripting.FileSystemObject")

strPath = objShell.SpecialFolders("desktop")

strFile = strPath & strFile

Set objFile = objfso.OpenTextFile(strFile,ForAppending,createFile)

objFile.WriteLine (strIN)

End Sub

Function funfix (strIN)

funfix = "\" & strin

End Function

3.	 In the subroutine, locate the line that assigns the file name to the strFile variable. Change
the name of the file to LogService.csv. This is seen below:

strFile = funfix("logService.csv")

4.	 Inside the For Each…Next loop of the main script, we need to remove the WScript.Echo
statement and the VbCrLf statements, and intersperse the properties with commas
instead. We need to declare a new variable called strValues and then assign our Worker
section to this variable. The code to be placed in the For Each…Next loop is seen here:

strValues = objItem.name & "," & objItem.StartName & _

"," & objItem.started

5.	 On the line below the new line to be placed inside the For Each…Next loop, call the
subroutine and pass the strValues variable as an input parameter to the sub. This is seen
here:

subText(strValues)

6.	 Save and run the script. A .csv file will appear on the desktop. The results will look like
the spreadsheet in Figure 10-3. If they do not, then compare your script with the \My
Documents\Microsoft Press\VBScriptSBS\ch10\ServiceAccountLogged.vbs script.

Chapter 10 Querying WMI 241
Figure 10-3 To display data that is opened in Excel, use .csv files

Where Is the Where Clause?
To more easily modify the Where clause in a script, substitute the Where clause with a variable.
This configuration can be modified to include command-line input as well. This is seen in the
ListSpecificWhereVariableShares.vbs script.

ListSpecificWhereVariableShares.vbs
Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

Dim vWhere

strComputer = "."

wmiNS = "\root\cimv2"

vWhere = " name = 'C$'"

wmiQuery = "Select Name, path, allowMaximum from win32_Share where " & vWhere

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Path: " & objItem.path

242 Part II Basic Windows Administration
WScript.Echo "AllowMaximum: " & objItem.AllowMaximum

WScript.Echo

Next

Let’s return to our scenario in which you are looking for shares that have not been limited by
the number of connections. You can modify the vWhere variable to look for AllowMaximum =
'true'. It would look like the following:

strComputer = "."

wmiNS = "\root\cimv2"

vWhere = " AllowMaximum = ‘true’"

wmiQuery = "Select Name, path, allowMaximum from Win32_Share where " & vWhere

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Path: " & objItem.path

WScript.Echo "AllowMaximum: " & objItem.AllowMaximum

WScript.Echo

Next

Quick Check

Q. To limit the specific data returned by a query, what WQL statement can be utilized?

A. The Where clause is very powerful in limiting the specific data returned by a query.

Q. What are three possible operators that can be employed in creating powerful Where
clauses?

A. The equal sign and the greater than and less than symbols can be used to evaluate the
data prior to returning the data set.

Running against multiple computers

1.	 Open the wmiTemplate.vbs template in Notepad or your favorite script editor. Save the
file as YourNameMultipleComputerMouse.vbs.

2.	 In the Header section of the script, declare two new variables (strComputers, aryComput­
ers) that will be used to hold the string of computer names to target, as well as the array
that will be created later. This is seen here:

Dim strComputers 'string of several computers

Dim aryComputers 'an array of computers

3.	 Assign a few computer names to the strComputers variable. Use any computer reachable
via your network, or you can use the ones listed here:

strComputers = "localhost,127.0.0.1,loopback"

Chapter 10 Querying WMI 243
4.	 Use the Split function to turn strComputers into an array. Assign the array to the variable
aryComputers, as seen below:

aryComputers = Split(strComputers,",")

5.	 Modify the WMI query so that it chooses the Handedness property from the

WIN32_PointingDevice WMI class. The query will look like the following:

wmiQuery = "Select Handedness from win32_pointingdevice"

6.	 Use WScript.Echo to print out the WMI query. This will be a header line for the output.

WScript.Echo wmiQuery

7.	 Modify the Output section of the script to echo out the Handedness property value. This
will be the only line in the For Each…Next loop that iterates through colItems. Use vbTab
to space over the output. This is seen below:

For Each objItem in colItems

WScript.Echo vbTab & "handedness: " & objItem.handedness

Next

8.	 Use For Each…Next to walk through the array. Use the strComputer variable to hold an
individual computer from the array. Make sure you close out the loop by putting Next as
the last line in the script, as seen below:

For Each strComputer In aryComputers

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

WScript.Echo vbTab & "handedness: " & objItem.handedness

Next

Next

9.	 Under the For Each strComputer In aryComputers line, use WScript.Echo to print out the
name of the computer being queried. This value is contained in the strComputer variable.

WScript.Echo "Computer: " & strComputer

10.	 Save and run the script using CScript. Your output will be similar to the output below. If
it is not, then compare your script with \My Documents\Microsoft
Press\VBScriptSBS\ch10\MultipleComputerMouse.vbs.

Select Handedness from win32_pointingdevice

Computer: localhost

handedness: 2

handedness: 2

Computer: 127.0.0.1

handedness: 2

handedness: 2

244

Writ
Exer
Part II Basic Windows Administration

Computer: loopback

handedness: 2

handedness: 2

ing an Informative WMI Script Step-By-Step
cise

In this section, you are going to write a WMI script that returns a lot of information about pro-
cesses. This will be used as a starter script later.

1. Open Notepad or your faovirite script editor.

2. On the first line, type Option Explicit to ensure you declare all variables used in the
script.

3. Declare the following variables: objWMIService, colItems, objItem, and wmiQuery. To spec-
ify what each variable is used for, add comments following each declaration.

4. Assign wmiQuery to be equal to a WQL Select statement that returns everything from the
win32_Process class. Your code will look like the following:

wmiQuery = "Select * from Win32_Process"

5. Set objWMIService equal to the object returned by the GetObject method when used in
conjunction with the WMI moniker. Your code will look like the following:

Set objWMIService = GetObject("winmgmts:\\")

6. Set colItems equal to object returned by issuing the WQL statement held by the variable
wmiQuery when you use the ExecQuery method. Your code will look like the following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

7. Use a For Each…Next loop to iterate through colItems. Instead of typing all the properties
in your script, open the student resource CD and copy the For Each…Next loop from the
StepByStep_Starter_For Each Next Loop.vbs script in \My Documents
\Microsoft Press\VBScriptSBS\ch10\StepByStep.

8. Save your work as YourNameInformativeWMI.vbs.

9. Run your script in CScript. Your completed script will look like the following:

Option Explicit

On Error Resume Next

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

wmiQuery = "Select * from Win32_Process"

Set objWMIService = GetObject("winmgmts:\\")

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems

WScript.Echo "Caption: " & objItem.Caption

Chapter 10 Querying WMI 245
WScript.Echo "CommandLine: " & objItem.CommandLine

WScript.Echo "CreationClassName: " & objItem.CreationClassName

WScript.Echo "CreationDate: " & objItem.CreationDate

WScript.Echo "CSCreationClassName: " & objItem.CSCreationClassName

WScript.Echo "CSName: " & objItem.CSName

WScript.Echo "Description: " & objItem.Description

WScript.Echo "ExecutablePath: " & objItem.ExecutablePath

WScript.Echo "ExecutionState: " & objItem.ExecutionState

WScript.Echo "Handle: " & objItem.Handle

WScript.Echo "HandleCount: " & objItem.HandleCount

WScript.Echo "InstallDate: " & objItem.InstallDate

WScript.Echo "KernelModeTime: " & objItem.KernelModeTime

WScript.Echo "MaximumWorkingSetSize: " & objItem.MaximumWorkingSetSize

WScript.Echo "MinimumWorkingSetSize: " & objItem.MinimumWorkingSetSize

WScript.Echo "Name: " & objItem.Name

WScript.Echo "OSCreationClassName: " & objItem.OSCreationClassName

WScript.Echo "OSName: " & objItem.OSName

WScript.Echo "OtherOperationCount: " & objItem.OtherOperationCount

WScript.Echo "OtherTransferCount: " & objItem.OtherTransferCount

WScript.Echo "PageFaults: " & objItem.PageFaults

WScript.Echo "PageFileUsage: " & objItem.PageFileUsage

WScript.Echo "ParentProcessId: " & objItem.ParentProcessId

WScript.Echo "PeakPageFileUsage: " & objItem.PeakPageFileUsage

WScript.Echo "PeakVirtualSize: " & objItem.PeakVirtualSize

WScript.Echo "PeakWorkingSetSize: " & objItem.PeakWorkingSetSize

WScript.Echo "Priority: " & objItem.Priority

WScript.Echo "PrivatePageCount: " & objItem.PrivatePageCount

WScript.Echo "ProcessId: " & objItem.ProcessId

WScript.Echo "QuotaNonPagedPoolUsage: " & objItem.QuotaNonPagedPoolUsage

WScript.Echo "QuotaPagedPoolUsage: " & objItem.QuotaPagedPoolUsage

WScript.Echo "QuotaPeakNonPagedPoolUsage: " & _

objItem.QuotaPeakNonPagedPoolUsage

WScript.Echo "QuotaPeakPagedPoolUsage: " & objItem.QuotaPeakPagedPoolUsage

WScript.Echo "ReadOperationCount: " & objItem.ReadOperationCount

WScript.Echo "ReadTransferCount: " & objItem.ReadTransferCount

WScript.Echo "SessionId: " & objItem.SessionId

WScript.Echo "Status: " & objItem.Status

WScript.Echo "TerminationDate: " & objItem.TerminationDate

WScript.Echo "ThreadCount: " & objItem.ThreadCount

WScript.Echo "UserModeTime: " & objItem.UserModeTime

WScript.Echo "VirtualSize: " & objItem.VirtualSize

WScript.Echo "WindowsVersion: " & objItem.WindowsVersion

WScript.Echo "WorkingSetSize: " & objItem.WorkingSetSize

WScript.Echo "WriteOperationCount: " & objItem.WriteOperationCount

WScript.Echo "WriteTransferCount: " & objItem.WriteTransferCount

WScript.Echo " *********************************"

Next

One-Step-Further: Obtaining More Direct Information
In this section, you modify the \My Documents\Microsoft Press\VBScriptSBS\ch10\
OneStepFurther\InformativeWMI.vbs script to return a bit more directed information.

246 Part II Basic Windows Administration
1.	 Open Notepad or some other editor.

2.	 Open the InformativeWMI.vbs script and save it as YourNameDirectedWMI.vbs.

3.	 Under the list of declared variables, add a new declaration for a variable called vWhere.

4.	 Insert a new line above the line defining the WMI query.

5.	 Save and run the script from a command line using CScript.

6.	 Identify no more than five or six “interesting properties” for inclusion in your new
script. I decided to use the following: Name, CommandLine, MaximumWorkingSetSize,
QuotaPeakNonPagedPoolUsage, ProcessID, and ThreadCount. I chose CommandLine rather
than the executable path because many times, programs will launch with a command-
line parameter (or switch), which does not show up in the executable path variable. In
addition, when something is running in the svcHost, the command-line parameter
enables you to see what is actually running in that service host. Your For Each...Next loop
might look something like this code:

For Each objItem In colItems

WScript.Echo "CommandLine: " & objItem.CommandLine

WScript.Echo "PID: " & objItem.ProcessID

WScript.Echo "MaximumWorkingSetSize: " & objItem.MaximumWorkingSetSize

WScript.Echo "QuotaPeakNonPagedPoolUsage: " & _

objItem.QuotaPeakNonPagedPoolUsage

WScript.Echo "ThreadCount: " & objItem.ThreadCount

WScript.Echo " *********************************"

Next

7.	 Save your work.

8.	 Above the wmiQuery line, define the vWhere variable to be equal to a Where clause that
specifies the number of threads as greater than 10. Make sure you encase the entire
Where clause in a set of double quotation marks. In addition, make sure that the number
is also encased in single quotation marks. That will entail a '10''' at the end of your Where
clause. Your code might look like the following:

vWhere = " where threadCount > '10'"

9.	 Save your work.

10.	 Modify the WMI query to utilize the vWhere variable. This is rather simple in that all you
need to do is insert a space at the end of the query inside the double quotation marks
and then use the ampersand and type the vWhere variable name. The code will look like
the following:

wmiQuery = "Select * from Win32_Process " & vWhere

11.	 Save and run your script in CScript. If it does not run properly, compare your script with
the \My Documents\Microsoft Press\VBScriptSBS\ch10\OneStepFurther\Directed-
WMI.vbs script.

Chapter 10 Querying WMI 247
Using a More Complicated Where Clause Step-by-Step InstructionsIn this section, you modify
the \My Documents\Microsoft Press\VBScriptSBS\ch10\OneStepFurther\Directed-
WMI.vbs file to use a more complicated Where clause.

1.	 Open Notpad or your favorite script editor.

2.	 Open the \DirectedWMI.vbs file and save it as YourNameDirectedWMI_Where.vbs.

3.	 Modify the vWhere clause to include the requirement that the Process ID (PID) is greater
than 100. Your completed vWhere line might look like the following:

vWhere = " where threadCount > '10' and ProcessID >100"

4.	 Save your script and run it in CScript. Notice how many lines of data are returned.

5.	 Modify the vWhere clause so that the PID must be greater than 1,000. Your code will
look like the following:

vWhere = " where threadCount > '10' and ProcessID >1000"

6.	 Save the script and run it in CScript. Notice how the data set has been trimmed.

7.	 Now change the thread count so that it is 50. Your code will look like the following:

vWhere = " where threadCount > '50' and ProcessID >1000"

8.	 How many lines of data are returned now? On my machine there are none.

9.	 Now you are going to switch operators. Change the and to an or. The line will now look
like the following:

vWhere = " where threadCount > '50' or ProcessID >1000"

10.	 Look through the data that is returned. You will see data in which the thread count is
greater than 50, and you will see data in which the process ID is greater than 1,000, but
you will probably not see both in a single data set (that is what we did in step 7).

11.	 Save and run your script. If there are problems, compare your script with the
DirectedWMI_Where.vbs script in the One Step Further folder.

Chapter 10 Quick Reference

To Do This

Execute a WMI query	 Use the ExecQuery method

Limit the number of instances returned in Use a Where clause
response to a query

Limit the number of properties returned from Specify individual properties in the Select
the object statement

Return only specific data about a specific item	 Use a query that chooses individual properties in
the Select statement, and identify an individual
instance via the Where clause

Part III

Advanced Windows
Administration

In this part:

Chapter 11: Introduction to Active Directory Service Interfaces 251

Chapter 12: Writing for ADSI . 269

Chapter 13: Using ADO to Perform Searches . 293

Chapter 14: Configuring Networking Components 315

Chapter 15: Using Subroutines and Functions . 329

Chapter 16: Logon Scripts . 349

Chapter 17: Working with the Registry . 367

Chapter 18: Working with Printers . 381

Chapter 11

Introduction to Active Directory
Service Interfaces

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from earlier chapters:

■	 Creating arrays

■	 Outputting data to text files

■	 Reading information contained in text files

■	 Implementing the For…Next construction

■	 Implementing the Select Case construction

After completing this chapter, you will be able to:

■	 Connect to Microsoft Active Directory Service Interfaces (ADSI) providers

■	 Work with Microsoft Active Directory directory service namespaces

■	 Create organizational units (OUs) in Active Directory

■	 Create users in Active Directory

Working with ADSI
In this section, you use ADSI and Microsoft Visual Basic, Scripting Edition (VBScript) to per­
form basic network administration tasks. The following list summarizes some high-level uses
of ADSI and VBScript:

■	 Importing a list of names and creating user accounts

■	 Importing a list and changing user passwords

■	 Importing a list and creating an entire organizational unit structure following an
upgrade to Microsoft Windows Server 2003

■	 Reading the Microsoft Exchange 5.x directory and setting the display name in Active
Directory with the value from Exchange 5.x
251

252 Part III Advanced Windows Administration
■	 Reading the Exchange 5.x directory for a default personalized Simple Mail Transfer Pro­
tocol (SMTP) address and setting it in Active Directory

■	 Reading the computer name or Internet Protocol (IP) address and mapping local print­
ers to users

■	 Creating personalized shortcuts for users at logon time based on group memberships

■	 Mapping drives based on OU membership

Just the Steps To connect to Active Directory

1. Implement a connection to Active Directory.

2. Use the appropriate provider.

3. Specify the path to the appropriate object in Active Directory.

4. Use SetInfo to write changes to Active Directory.

In a basic fashion, the following script, CreateOU.vbs, uses each of the four steps in the pre­
ceding Just the Steps feature. CreateOU.vbs uses variables for each of the four main steps to
maintain portability.

Note When running the CreateOU.vbs script to create an OU, ensure you have access to a
Windows Server 2003 running Active Directory, and make sure you change the name of the
strDomain, strOU, and strOUname variables to reflect your actual configuration.

CreateOU.vbs
Option Explicit

On Error Resume Next

Dim strProvider 'defines how will talk to Active Directory

Dim strOU 'path to where new object will be created

Dim strDomain 'name of Domain connecting to

Dim strClass 'the class of object we are creating

Dim strOUname 'name of object are creating

Dim objDomain 'holds connection to adsi

Dim objOU 'holds handle to create method

strProvider = "LDAP://"

strOU = "" 'When supplying a value here, a trailing comma is required.

strDomain = "dc=nwtraders,dc=msft"

strClass = "organizationalunit"

strOUname = "OU=mred"

Set objDomain = GetObject(strProvider & strOU & strDomain)

WScript.Echo strProvider & strOU & strDomain 'debug

Set objOU = objDomain.create(strClass, strOUname)

WScript.Echo strClass & "," & strOUname 'debug

objOU.SetInfo

Chapter 11 Introduction to Active Directory Service Interfaces 253
If Err.number = 0 Then

WScript.Echo(strOUname & " was created")

Else If Err.number = "-2147019886" Then

WScript.Echo strOUname & " already exists"

Else

WScript.Echo " error on the play " & Err.Number

End If

End If

Reference Information

The Reference information section of the script configures the connection to Active Directory
and specifies the path and target of the operation. The first decision to make is which provider
to use. Let’s talk about ADSI providers prior to looking at the remainder of the Reference infor­
mation section.

ADSI Providers

Table 11-1 lists four providers available to users of ADSI. Connecting to a Microsoft Windows NT
4 system requires using the special WinNT provider. During Active Directory migrations, consult­
ants often write a script that copies users from a Windows NT 4 domain to a Microsoft Windows
Server 2003 Active Directory OU or domain. In some situations (such as with customized naming
schemes), writing a script is easier than using the Active Directory Migration Tool (ADMT).

Table 11-1 ADSI Supported Providers

Provider Purpose

WinNT: To communicate with Windows NT 4.0 Primary Domain Controllers (PDCs)
and Backup Domain Controllers (BDCs), and with local account databases for
Windows 2000 and newer workstations

LDAP: To communicate with Lightweight Directory Access Protocol (LDAP) servers,
including Exchange 5.x directory and Windows 2000 Active Directory

NDS: To communicate with Novell Directory Services servers

NWCOMPAT: To communicate with Novell NetWare servers

The first time I tried using ADSI to connect to a machine running Windows NT, I had a very
frustrating experience because of the way the provider was implemented. Type the WinNT
provider name exactly as shown in Table 11-1. It cannot be typed using all lowercase letters or
all uppercase letters. All other provider names must be all uppercase letters, but the WinNT
name is Pascal-cased, that is, it is partially uppercase and partially lowercase. Remembering
this will save a lot of grief later. In addition, if you don't type this in the correct case, you don’t
get an error message telling you that your provider name is “spelled wrong”—rather, the bind
operation simply fails to connect.

Warning The ADSI provider names are case-sensitive. LDAP, NWCOMPAT, and NDS are all
caps. WinNT is Pascal-cased and must not be typed in all caps. Keep this in mind to save time
in troubleshooting.

254 Part III Advanced Windows Administration
Once the ADSI provider is specified, you need to identify the path to the directory target. This
is where a little knowledge of Active Directory comes in handy because of the way the hierar­
chical naming space is structured. When connecting to an LDAP service provider, you must
specify where in the LDAP directory hierarchy to make the connection, because the hierarchy
is a structure of the directory itself and not the protocol or the provider. For instance, in the
CreateOU.vbs script, you create an OU that resides off the root of the domain, which is called
the MrEd OU. This can get confusing, until you realize that the MrEd OU is contained in a
domain that is called nwtraders.msft. It is vital, therefore, that you understand the hierarchy
with which you are working. One tool you can use to make sure you understand the hierarchy
of your domain is ADSI Edit.

Note Perhaps the hardest part of using ADSI is finding out what things are called in the
directory. This is because the names defined in the Active Directory schema often bear no rela­
tionship to the display names you see in tools such as Active Directory Users And Computers.
To see an example of this, refer to Appendix B, “ADSI Documentation.”

ADSI Edit is included in the support tools on the Windows Server 2003 disk. It is in the sup­
port\tools directory and is installed by clicking Suptools.msi. Installation requires Help and
other programs to be closed. The installation takes only a couple of minutes and does not
require a reboot. After the support tools are installed, you open a blank Microsoft Manage­
ment Console (MMC) and add the ADSI Edit snap-in. After you install the snap-in, right-click
the ADSI Edit icon, select Connect To, and specify your domain using the drop-down box, as
illustrated in Figure 11-1.

Figure 11-1 Explore the hierarchy of a forest to ensure correct path information for your script

Chapter 11 Introduction to Active Directory Service Interfaces 255
LDAP Names

When specifying the OU and the domain name, you have to use the LDAP naming conven­
tion, in which the namespace is described as a series of naming parts called relative distin­
guished names (RDNs). The relative distinguished name will always be a name part that assigns
a value by using the equal sign. When you put together all the relative distinguished names,
and the RDNs of each of the ancestors all the way back to the root, you end up with a single
globally unique distinguished name.

The relative distinguished names are usually made up of an attribute, an equal sign, and a string
value. Table 11-2 lists some of the attribute types you will see when working with Active Directory.

Table 11-2 Common Relative Distinguished Name Attribute Types

Attribute Description

DC Domain Component

CN Common Name

OU Organizational Unit

O Organization Name

Street Street Address

C Country Name

UID User ID

Worker Information

The Worker information section of the script includes two lines of code: The first line per­
forms the binding (we talk about binding later in this section), and the second creates the OU.
To perform these tasks, you need to build the distinguished name, which entails creating the
OU after connecting to the appropriate level in the Active Directory hierarchy.

In the CreateOU.vbs script, the distinguished name is a concatenation of two separate vari­
ables. The variables and their associated values are listed here:

strOU = ""

strDomain = "dc=nwtraders,dc=msft"

You can verify that you are connecting to the correct OU by using ADSI Edit. To do this, right-
click the target OU, select Properties, and choose Distinguished Name from the list of avail­
able properties. A dialog box like the one shown in Figure 11-2 appears.

Figure 11-2 Use the String Attribute Editor in ADSI Edit to quickly verify the distinguished name of
a potential target for ADSI scripting

256 Part III Advanced Windows Administration
The next line in the Reference information section specifies the object class with which you
are working. When you get to the Worker section and you use the Create method, you will
need to specify what type of object you are creating. In CreateOU.vbs, you use code that looks
like the following line:

strClass = "organizationalUnit"

IADsContainer

In your script, you are actually using the Create method of a well-known interface called
IADsContainer. It is used to enable an ADSI container object to create, delete, or otherwise
manage ADSI objects. All container objects in Active Directory implement IADsContainer.
IADsContainer supports five methods, listed in Table 11-3, that can be used on any ADSI con­
tainer object in Active Directory. Each of these methods is used in scripts later in this book.

Table 11-3 IADsContainer Methods

Method Meaning

GetObject Binds the directory item with the specified ADsPath to a named variable.

Create Creates a new object of a specified class in the current container.

Delete Removes an object of the specified class from the current container.

CopyHere Creates a copy of the object with a specified ADsPath in the current container.
Be aware that the object must be in the same directory namespace. For exam­
ple, you cannot copy an object from an LDAP: namespace to a WinNT:
namespace.

MoveHere Moves the object with a specified ADsPath from its original location to the cur­
rent container. The same namespace restrictions that apply to the CopyHere
method also apply to the MoveHere method.

In the CreateOU.vbs script, you implement the IADsContainer Create method to create the
OU. Two variables do this. The first variable is called oOU, which holds the class of the object
you want to create. This time, oOU is set to equal OU. The second variable used is called
oOUname. It looks like it could hold the name of the OU because it does. The variable objOU
holds the connection to the Create method once you implement the connection using the Set
command, as shown in this line of code:

Set objOU = objDomain.create(strClass, strOUname)

Binding

Whenever you want to do anything with ADSI, you must connect to an object in Active Direc­
tory, a process also known as binding. Think of binding as being like tying a rope around an
object to enable you to work with it. (In Texas, they’d call it lassoing.) Before you can do any
work with an object in Active Directory, you must supply binding information. The binding
string enables you to use various ADSI elements, including methods and properties. The target
of the proposed action is specified as a computer, a domain controller, a user, or another ele­

Outp
Chapter 11 Introduction to Active Directory Service Interfaces 257

ment that resides within the directory structure. A binding string consists of five parts. These
parts are illustrated in the following binding string from a sample script:

Note Avoid a mistake I made early on: Make sure that when you finish connecting and cre-
ating, you actually commit your changes to Active Directory. Changes to Active Directory are
transactional in nature, so your change will roll back if you don’t commit it. Committing the
change requires you to use the SetInfo method, as illustrated in the following line from the Cre-
ateOU.vbs script: objOU.SetInfo.

ut Information
By default, this script would not have any output information. However, to illustrate that the
script is actually doing something, I implemented a simple WScript.Echo command to echo
out the name of the container that was created. Because the OU to be created is held in the
variable named oOUname, it was a simple proposition to echo out the contents of the variable,
as illustrated in the following code snippet—the problem is the line of code could “lie” to you.
If an error occurred, it would still say the OU was created.

WScript.Echo("OU " & oOUname & " was created")

To forestall this inexactitude, check the err object. If there are no errors, print out the line. If,
however, an error occurs, then trap the message. The error line Err.number = "-2147019886"
was developed by printing out the error numbers. When it was noticed that -2147019886
always appeared when a duplicate object existed, it was trivial to report this information. This
is seen below:

If Err.number = 0 Then

WScript.Echo(strOUname & " was created")

Else If Err.number = "-2147019886" Then

WScript.Echo strOUname & " already exists"

Else

WScript.Echo " error on the play " & Err.Number

End If

End If

Quick Check

Keyword Variable Command Provider ADsPath

Set objDomain GetObject LDAP:// OU=hr, dc=a, dc=com
Q. What is the process of connecting to Active Directory called?

A. The process of connecting to Active Directory is called binding.

Q. When specifying the target of an ADSI operation, what is the target called?

A. The target of the ADSI operation is called the ADsPath.

258 Part III Advanced Windows Administration
Q. An LDAP name is made up of several parts. What do you call each part separated by a
comma?

A. An LDAP name is made up of multiple parts that are called relative distinguished names.

Creating Users
One trick you can do using ADSI is create users. Although using the graphical user interface
(GUI) to create a single user is easy, using the GUI to create a dozen or more users would cer­
tainly not be. In addition, as you’ll see, because there is a lot of similarity among ADSI scripts,
deleting a dozen or more users is just as simple as creating them. And because you can use the
same input text file for all the scripts, ADSI makes creating temporary accounts for use in a lab
or school easy.

Just the Steps To create users

1. Use the appropriate provider for your network.

2. Connect to the container for your users.

3. Specify the domain.

4. Specify the User class of the object.

5. Bind to Active Directory.

6. Use the Create Method to create the user.

7. Use the Put method to at least specify the sAMAccountName property.

8. Use SetInfo to commit the user to Active Directory.

The CreateUser.vbs script, which follows, is very similar to the CreateOU.vbs script. In fact,
CreateUser.vbs was created from CreateOU.vbs, so a detailed analysis of the script is unneces­
sary. The only difference is that oClass is equal to the "User" class instead of to an
"organizationalUnit" class.

CreateUser.vbs
Option Explicit

On Error Resume Next

Dim strProvider 'defines how will talk to Active Directory

Dim strOU 'path to where new object will be created

Dim strDomain 'name of Domain connecting to

Dim strClass 'the class of object we are creating

Dim strOUname 'name of object are creating

Dim objDomain 'holds connection to adsi

Dim objOU 'holds handle to create method

strProvider = "LDAP://"

strOU = "OU=mred," 'when using is OU=mred, THE , would be required.

strDomain = "dc=nwtraders,dc=msft"

Chapter 11 Introduction to Active Directory Service Interfaces 259
strClass = "User"

strOUname = "CN=MyNewUser"

Set objDomain = GetObject(strProvider & strOU & strDomain)

WScript.Echo strProvider & strOU & strDomain 'debug

Set objOU = objDomain.create(strClass, strOUname)

WScript.Echo strClass & "," & strOUname 'debug

objOU.Put "SAMAccountName", funfix(strOUname)

objOU.SetInfo

If Err.number = 0 Then

WScript.Echo(strOUname & " was created")

Else If Err.number = "-2147019886" Then

WScript.Echo strOUname & " already exists"

Else

WScript.Echo " error on the play " & Err.Number

End If

End If

Function funfix (strin)

funfix = Mid(strin,4) 'removes cn= from username

End function

Reference Information

The Reference information section is where you assign values to the variables that would nor­
mally be declared in a script of this type. The provider in this case is LDAP://. Remember that
the provider name is case-sensitive—all caps is a requirement for the LDAP provider. You next
specify the OU you’ll use in the ADsPath portion of the binding string. You are targeting an
OU called mred (which will exist if you ran the CreateOU.vbs script from the earlier section).
The domain name is made up of two domain components, or DCs, separated by commas. The
domain name is nwtraders.msft, so the first component is dc=nwtraders, and the second is
dc=msft.

You must specify the user class when creating user accounts. When creating a user account,
the user name is specified by a "cn=" prefix. In Table 11-2, you learned that cn actually stands
for common name. For users, you must specify the common name property of the user object.

The user will at least need a sAMAccountName to be able to log on to the network. The sAMAc­
countName can be the same as the common name property, and in many cases it is. You are
taking the defaults for everything else, including leaving the account disabled. In the Step-by-
Step exercises, you’ll create a user and assign values to more attributes, but for illustrative pur­
poses, this suffices.

Worker Information

In the Worker information section of the script, the script starts to depart from other scripts
you have looked at thus far. In this script are four lines of code, which follow:

260 Part III Advanced Windows Administration
Set objDomain = GetObject(strProvider & strOU & strDomain)

WScript.Echo strProvider & strOU & strDomain 'debug

Set objOU = objDomain.create(strClass, strOUname)

WScript.Echo strClass & "," & strOUname 'debug

objOU.Put "SAMAccountName", funfix(strOUname)

objOU.SetInfo

The binding to ADSI is exactly the same as in the previous script. You even use the same vari­
able name. In the next line, however, when you call the Create method, you use different vari­
ables because you create a User instead of an OU. The strClass variable is equal to User,
strOUName is equal to "CN=MyNewUser". You now utilize the Put method to specify the
sAMAccountName property. In this script, you use funfix to trim the name, and you feed it the
strOUname variable. Once all that work is done, you call SetInfo and write the data to Active
Directory.

Output Information

After creating the user, it would be nice to have some type of feedback. You use the same meth­
odology as in the previous script by evaluating the error object and printing out the approriate
message. This is seen below:

If Err.number = 0 Then

WScript.Echo(strOUname & " was created")

Else If Err.number = "-2147019886" Then

WScript.Echo strOUname & " already exists"

Else

WScript.Echo " error on the play " & Err.Number

End If

End If

Quick Check

Q. To create a user, which class must be specified?

A. You need to specify the User class to create a user.

Q. What is the Put method used for?

A. The Put method is used to write additional property data to the object that it is bound to.

Creating groups

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch11\CreateUser.vbs script
in Microsoft Notepad or some other script editor and save it as YourNameCreate-
Group.vbs.

2.	 In the Header section of the script, declare a variable called intGroupType. This variable
will be used to control the type of group to create. This is seen below.

Dim intGroupType 'controls type of group to create

Chapter 11 Introduction to Active Directory Service Interfaces 261
3.	 In the Reference section of the script, change the value of strClass from user to group.
This variable is used to control the type of object that gets created in Active Directory.
This is seen below.

strClass = "Group"

4.	 In the Reference section of the script, change the value of strOUname from
"CN=MyNewUser" to "CN=MyNewGroup". The value of this variable is used to set several
attributes on the new object. The code to do this is seen below.

strOUname = "CN=MyNewGroup"

5.	 Under the strOUname line in the Reference section of the script, add a new line to assign
the value to intGroupType. Use the number -2147483646 to create a security group.

intGroupType = -2147483646 '2= distribution Group

6.	 Save and run the script. It should create a new group in your OU. If it does not, then
compare the script to the \My Documents\Microsoft Press\VBScriptSBS\ch11\Create-
Group.vbs script.

Creating a computer account

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch11\CreateUser.vbs script
in Notepad or another script editor and save it as YourNameCreateComputer.vbs.

2.	 Delete the value assigned to the strOU variable, "OU=mred" but keep the empty double
quotation marks, as seen below:

strOU = ""

3. Modify the value of strDomain to include the OU where the computer account will be
created. To do this, append OU=mred to dc=nwtraders,dc=msft. This is seen below:

strDomain = "OU=mred,dc=nwtraders,dc=msft"

4.	 Change the class assignment to the strClass variable from "User" to "Computer", as seen
below:

strClass = "Computer"

5.	 Change the name supplied to the strOUname variable to the name of the computer

account. Prefix it with "CN=". I used "CN=MyMredComputer", as seen below:

strOUname = "CN=MyMredComputer"

6.	 After you call SetInfo to write the account to Active Directory, you will need to activate
the account. To do this, put a special value in the userAccountControl attribute; 4128 will

262 Part III Advanced Windows Administration
activate the account. Once again, call SetInfo to write it to Active Directory. This is seen
below:

objOU.put "userAccountControl",4128 'enables the computer account

objOU.SetInfo

7.	 Save and run the script. If an enabled computer account is not created in the target OU,
check your script against \My Documents\Microsoft Press\VBScriptSBS\ch11\Create-
Computer.vbs.

What Is UserAccountControl?
UserAccountControl is an attribute stored in Active Directory that is used to enable or dis­
able a user account, computer account, or other object defined in Active Directory. It is
not a single string attribute, rather it is a series of flags that gets computed from the val­
ues listed in the following table, Table 11-4. Because of the way the UserAccountControl
attribute gets created, simply examining the numerical value is of little help unless you
can decipher the individual numbers that make up the large number. These flags, when
added together, control the behavior of the user account on the system. In the script
CreateComputer.vbs, we set two user account control flags: the
ADS_UF_PASSWD_NOTREQD flag and the
ADS_UF_WORKSTATION_TRUST_ACCOUNT flag. The password not required flag
has a hex value of 0x20, and the the trusted workstation flag has a hex value of 0x1000.
When added together and turned into decimal value, they equal 4,128, which is the
value actually seen in ADSI Edit. The use of these user account control values is seen in
Figure 11-3.

Table 11-4 User Account Control Values

Ads Constant Value

ADS_UF_SCRIPT 0x0001

ADS_UF_ACCOUNTDISABLE 0x0002

ADS_UF_HOMEDIR_REQUIRED 0x0008

ADS_UF_LOCKOUT 0x0010

ADS_UF_PASSWD_NOTREQD 0x0020

ADS_UF_PASSWD_CANT_CHANGE 0x0040

ADS_UF_ENCRYPTED_TEXT_PASSWORD_ALLOWED 0x0080

ADS_UF_TEMP_DUPLICATE_ACCOUNT 0x0100

ADS_UF_NORMAL_ACCOUNT 0x0200

ADS_UF_INTERDOMAIN_TRUST_ACCOUNT 0x0800

ADS_UF_WORKSTATION_TRUST_ACCOUNT 0x1000

ADS_UF_SERVER_TRUST_ACCOUNT 0x2000

ADS_UF_DONT_EXPIRE_PASSWD 0x10000

ADS_UF_MNS_LOGON_ACCOUNT 0x20000

Chapter 11 Introduction to Active Directory Service Interfaces 263
Figure 11-3 The UserAccountControl attribute

ADS_UF_SMARTCARD_REQUIRED 0x40000

ADS_UF_TRUSTED_FOR_DELEGATION 0x80000

ADS_UF_NOT_DELEGATED 0x100000

ADS_UF_USE_DES_KEY_ONLY 0x200000

ADS_UF_DONT_REQUIRE_PREAUTH 0x400000

ADS_UF_PASSWORD_EXPIRED 0x800000

ADS_UF_TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION 0x1000000

Table 11-4 User Account Control Values

Ads Constant Value

Creating OUs Step-by-Step Exercises
In this section, you are going to practice creating OUs. The result will eventually become a
subroutine that can be employed in other scripts to create OUs.

Important To successfully complete this section, you must have access to a Microsoft
Windows Server 2003 or later Active Directory Domain Controller. You must know the name of
the domain, and you must have rights to create objects in that domain.

264 Part III Advanced Windows Administration
These step-by-step instructions do not apply to Microsoft Windows Vista or Microsoft
Windows XP workstations.

1.	 Open Notepad or your favorite script editor.

2.	 On the first line, type Option Explicit.

3.	 Declare the following variables: provider, domain, oClass, oOU, objDomain, objOU,

oOUname, and oDescription.

4.	 Assign the LDAP provider to the variable called provider. Your code will look like the

following:

provider = "LDAP://"

5.	 Assign the name of a domain that is accessible on your network, such as nwtraders.msft,
to the domain variable. Split each section of the domain name into domain components.
This will look like the following:

domain = "dc=nwtraders,dc=msft"

6.	 Assign the variable to the organizationalUnit class. Make sure you encase the class name
in quotation marks, as shown here:

oClass = "organizationalUnit"

7.	 Assign the value ou= to the variable oOU, as seen below:

oOU = "ou="

8.	 Assign a value to the variable used to hold the OU name. In this case, the variable is

oOUname and the value is Lab22. The code will look like the following:

oOUname = "Lab22"

9.	 Assign an appropriate description to the oDescription variable. It will look something

like the following:

oDescription = "For Lab 22 Use"

10.	 Use the Set command to set the variable objDomain equal to the handle that comes back
from using the GetObject method when using the provider variable and the domain vari­
able. The code will look like the following:

Set objDomain = GetObject(provider & domain)

11.	 Use the Set command to set the variable objOU equal to the handle that comes back
from using the Create method when given the oClass, oOU, and oOUname variables. The
code will look like the following:

Set objOU = objDomain.create(oClass, oOU & oOUname)

12.	 Use the Put method to put the data contained in the oDescription variable into the field
designated as Description. Separate the variable from the field name with a comma. The
code will look like the following:

objOU.Put "description", oDescription

Chapter 11 Introduction to Active Directory Service Interfaces 265
13.	 Use the SetInfo method to commit the changes to Active Directory. The code will look
like the following:

objOU.SetInfo

14.	 Conclude your script by using WScript.Echo to echo out the name of oOUname and an
appropriate description of the action that was taken. I used the following code to do
this:

WScript.Echo("OU " & oOUname & " was created")

15.	 Save the script as YourNameCreateOU.vbs.

16.	 Run the script. For this script, it doesn’t matter whether you run it in CScript or from
WScript. It’s probably easier to just double-click the script and let it run in WScript.

17.	 Open Active Directory Users And Computers to verify the presence of the Lab22 OU.

18.	 Right-click the Lab22 OU and choose Properties from the Action menu. On the General
tab, verify that the description you assigned in step 11 is present in the Description field.

19.	 Close everything out. Do not delete the Lab22 OU because you’ll use it in the next
exercise.

One Step Further: Creating Multi-Valued Users
In this section, you are going to practice creating users. You’ll place the user in the OU created
in the previous step-by-step exercise.

Important To successfully complete this section, you must have access to a Microsoft Win­
dows Server 2003 or later Active Directory Domain Controller. You must know the name of the
domain, and you must have rights to create objects in that domain.

The result of this One Step Further exercise will eventually become a subroutine that you can
employ in other scripts when you need to use Users.

1.	 Open Notepad or your favorite script editor.

2.	 On the first line, type Option Explicit.

3.	 Declare the following variables: provider, ou, domain, oClass, oCN, objDomain, objUser,
oUname, and oDescription.

4.	 Assign the LDAP provider to the variable provider. It will look like the following:

provider = "LDAP://"

5.	 Assign the Lab22 OU to the OU variable. It will look like the following:

OU = "ou=lab22,"

266 Part III Advanced Windows Administration
6.	 Assign the domain used in step 5 of the Step-by-Step exercise to the domain variable.
This domain should be the one on your local network. Your code will look something
like the following:

domain = "dc=nwtraders,dc=msft"

7.	 Assign the User class to the oClass variable. It will look like the following:

oClass = "User"

8.	 Assign the "CN=" value to the oCN variable, as shown here:

oCN = "CN="

9.	 Assign to the oUname variable the name of the user to be created. For this exercise, we
will call the user labUser.

oUname = "labUser"

10.	 Assign an appropriate description for the new user. This entails assigning a value to the
oDescription variable:

oDescription = "created for lab22 use"

11.	 Use the Set command to set the variable objDomain equal to the handle that comes back
from using the GetObject function when fed the provider variable, OU variable, and
domain variable. The code looks like the following:

Set objDomain = GetObject(provider & OU & domain)

12.	 Use the Set command to set the variable objUser equal to the handle that comes back
from using the Create method when fed the oClass, oCN, and oUname variables. The
code will look like the following:

Set objUser = objDomain.Create(oClass, oCN & oUname)

13.	 Use the Put method to put the data contained in the oUname variable into the field des­
ignated as sAMAccountName. Separate the variable from the field name with a comma.
The code looks like the following:

objUser.Put "sAMAccountName", oUname

14.	 Use the Put method to put the data contained in the oUname variable into the field des­
ignated as DisplayName. Separate the variable from the field name with a comma. The
code looks like the following:

objUser.Put "DisplayName", oUname

15.	 Use the Put method to put the data contained in the oDescription variable into the field
designated as description. Separate the variable from the field name with a comma. The
code looks like the following:

objUser.Put "description", oDescription

Chapter 11 Introduction to Active Directory Service Interfaces 267
16.	 Use the SetInfo method to commit the changes to Active Directory. The code will look
like the following:

objUser.SetInfo

17.	 Conclude your script by using WScript.Echo to echo out the name of oUname and an

appropriate description of the action that was taken. I used the following code to do

this:

WScript.Echo("User " & oUname & " was created")

18.	 Save the script as YourNameCreateMultiValuedUser.vbs.

19.	 Run the script. It doesn’t matter whether you run this script in CScript or from WScript.
It’s probably easier to just double-click the script and let it run in WScript.

20.	 Open Active Directory Users And Computers to verify the presence of the new user. The
user will be contained in the Lab22 OU.

21.	 Right-click the new user and choose Properties from the Action menu. On the General
tab, verify that the display name and description you assigned earlier are present.

22.	 Close everything out.

Chapter 11 Quick Reference

To Do This

Talk to Active Directory, without having to Use the ADSI provider
specify the complexity of the specific directory

Talk to a NT 4.0 based directory Use the WinNT provider

Talk to Active Directory Use the LDAP provider

Talk to a NDS directory Use the NDS provider

Talk to a bindery based directory Use the NWCOMPAT provider

Refer to the common name in a LDAP relative Specify the CN attribute
distinguished name attribute

Bind to a directory object with the specified Use the GetObject Method of the
ADsPath to a named variable IADsContainer object

Chapter 12

Writing for ADSI

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from earlier chapters:

■	 Binding to Microsoft Active Directory directory service

■	 Creating users in Active Directory

■	 Creating organizational units (OUs) in Active Directory

■	 Implementing Active Directory Service Interfaces (ADSI) providers

■	 Working with Active Directory namespaces

■	 Implementing constants

After completing this chapter, you will be able to:

■	 Modify user profile information in Active Directory

■	 Modify Terminal Server settings in Active Directory

■	 Modify direct reporting information in Active Directory

■	 Delete users in Active Directory

■	 Delete organizational units in Active Directory

Working with Users
In this section, you will use Active Directory Service Interfaces (ADSI) to modify user proper­
ties stored in Active Directory. The following list summarizes a few of the items you can
change or configure:

■	 Office and telephone contact information

■	 Mailing address information

■	 Department, title, manager, and direct reports (people who report to the user inside the
“chain of command”)

User information that is stored in Active Directory can easily replace several pieces of dispar­
ate information in a single swoop. For instance, you might have an internal Web site that con­
269

270 Part III Advanced Windows Administration
tains a telephone directory; you can put the phone number into Active Directory as an
attribute of the User object. You might also have a Web site containing a social roster that
includes employees and their hobbies; you can put hobby information in Active Directory as
a custom attribute. By having the information stored in a single location (Active Directory),
then updating the attributes in Active Directory would also update the Web sites. You can
also add to Active Directory information such as an organizational chart. The problem, of
course, is that during a migration, information such as a user’s title is the last thing the harried
mind of the network administrator thinks about. To leverage the investment in Active Direc­
tory, you need to enter this type of information because it quickly becomes instrumental in
the daily lives of users. This is where the power of ADSI and Microsoft Visual Basic, Scripting
Edition (VBScript) really begins to shine. We can update hundreds or even thousands of
records easily and efficiently using scripting. Such a task would be unthinkable using conven­
tional point-and-click methods.

Just the Steps To modify user properties in Active Directory

1. Implement the appropriate protocol provider.

2. Perform binding to Active Directory.

3. Specify ADsPath.

4. Use the Put method to write selected properties to users.

5. Use the SetInfo method to commit changes to Active Directory.

General User Information

One of the more confusing issues when you use VBScript to modify information in Active
Directory is that the field names displayed on the various tabs of the graphical administrata­
tive tools such as Active Directory Users And Computers (ADUC) do not correspond with the
ADSI nomenclature. This was not done to make your life difficult; rather, the names you see in
ADSI are derived from Lightweight Directory Access Protocol (LDAP) standard naming con­
ventions. Although this naming convention makes traditional LDAP programmers happy, it
does nothing for the network administrator who is a casual scripter. This is where the follow­
ing script, ModifyUserProperties.vbs, comes in handy. The LDAP properties corresponding to
each field in Figure 12-1 are used in this script. Some of the names make sense, but others
appear to be rather obscure. Notice the series of objUser.Put statements. Each lines up with the
corresponding fields in Figure 12-1. Use the values to see which display name maps to which
LDAP attribute name.

ModifyUserProperties.vbs
Option Explicit

Dim provider 'defines how will talk to active directory

Dim ou 'path to where object resides

Dim domain 'name of domain connecting to

Dim oCN 'name of object are creating

Chapter 12 Writing for ADSI 271
Dim oUname 'user name

Dim objUser 'holds connection to adsi

provider = "LDAP://"

ou = "ou=mred,"

domain = "dc=nwtraders,dc=msft"

oCN = "CN="

oUname = "myNewUser,"

Set objUser = GetObject(provider & oCN & oUname & ou & domain)

WScript.echo provider & oCN & oUname & ou & domain ' debug info

objUser.put "SamaccountName", "myNewUser"

objUser.put "givenName", "My"

objUser.Put "initials", "f."

objUser.Put "sn", "User"

objUser.Put "DisplayName", "My New User"

objUser.Put "description" , "simple new user"

objUser.Put "physicalDeliveryOfficeName", "RQ2"

objUser.Put "telephoneNumber", "999-222-1111"

objUser.Put "mail", "fff@hotmail.com"

objUser.Put "wwwHomePage", "http://www.fred.msn.com"

objUser.SetInfo

If Err.Number = 0 then

WScript.Echo("User " & oUname & " was modified")

Else

WScript.echo "an error occurred. it was: " & Err.Number

End if

givenName

sn

description

mail

initials

DisplayName

physicalDeliveryOfficeName

telephoneNumber

wwwHomePage

Figure 12-1 All the General User properties can be set by using ADSI and VBScript

"http://www.fred.msn.com"

272 Part III Advanced Windows Administration
On the CD Discussion of the Header information section of ModifyUserProperties.vbs has
been omitted for clarity. This section does, however, exist in the original script on the compan­
ion CD.

Reference Information

The Reference information section of the script assigns values to the variables used in the
script. Here you assign the LDAP provider to the provider variable. You then assign the entire
ou path to the ou variable. The variable called Domain gets assigned both of the domain com­
ponents that are used for constructing a fully qualified name. These domain components are
the "DC=" sections of the code. You use oCn to hold the "cn=" string and you end the section by
equating oUname to the user name you plan to modify. If you were using a text file to supply
the variable, you could still use this variable. The Reference section follows:

provider = "LDAP://"

ou = "ou=lab22,"

domain = "dc=nwtraders,dc=msft"

oCn = "cn="

oUname = "labUser,"

Worker Information

The Worker information section of the ModifyUserProperties.vbs script contains a lot of code
because it modifies all the properties contained on the General tab of the user properties in
Microsoft Windows Server 2003. The first line in the Worker information section performs
the binding to Active Directory. In this instance, you bind not to an OU but to a specific user,
as shown here:

Set objUser = GetObject(provider & oCn & oUname & ou & domain)

You assign "CN" to the variable oCn to keep it separate from the user name portion. In this way,
you can more easily make changes to multiple users. In our particular situation, you connect
to the ou created in the previous chapter, and the Lab 22 ou is off the root in the Active Direc­
tory hierarchy. If the ou were nested, you could still use the script, and in the Reference section
specify something like ou = "ou=level1, ou=level2, ou=level3" (or whatever the actual namespace
consisted of). The domain variable holds the entire domain component. CN, UserName, ou,
and Domain make up the ADsPath portion of the binding string.

Once you have the binding to Active Directory, you are ready to begin modifying user informa­
tion. The nice part about using the Put method is that it overwrites any information already
present in that property of the cached copy of the User object. You will see the effect only on the
particular property being put until you call SetInfo to write the changes to Active Directory. If
you don’t specify a particular piece of information (that is, you leave the space between the quo­
tation marks empty), you’ll be greeted with an error message. Figure 12-2 shows this message.

Chapter 12 Writing for ADSI 273
Figure 12-2 Error message received when a property value is left out of a Put command

To write information to a specific user property, use the Put method. This entails specifying
both the ADSI field name and the desired value. The pertinent Worker information section of
the ModifyUserProperties.vbs script follows:

objUser.Put "givenName", "fred"

objUser.Put "initials", "f."

objUser.Put "sn", "flintstone"

objUser.Put "DisplayName", "labUser"

objUser.Put "description" , "funny looking dude"

objUser.Put "physicalDeliveryOfficeName", "RQ2"

objUser.Put "telephoneNumber", "999-222-1111"

objUser.Put "mail", "fff@hotmail.com"

objUser.Put "wwwHomePage", "http://www.fred.msn.com"

The last item in the Worker information section is the SetInfo command. If SetInfo isn’t called,
the information isn’t written to Active Directory. There will be no error message—merely an
absence of data. The ModifyUserProperties.vbs script uses the following SetInfo line to ensure
changes are written to Active Directory:

objUser.SetInfo

Output Information

Once all the changes are loaded into Active Directory, you include an output statement to let
you know that the changes have been made to Active Directory. In the ModifyUserProper­
ties.vbs script, you use a simple WScript.Echo statement. This echo statement is listed here:

WScript.Echo("User " & oUname & " was modified")

Quick Check

Q. In the ModifyUserProperties.vbs script, what is the field name for the user’s first name?

A. The field for the user’s first name is called "givenName". You can find field mapping
information in the Platform SDK.

Q. Why do you need to do a SetInfo command?

A. Without a SetInfo command, all changes introduced during the script are lost because
the changes are made to a cached set of attribute values for the object being modified.
Nothing is committed to Active Directory until you call SetInfo.

"http://www.fred.msn.com"

274 Part III Advanced Windows Administration
Modifying the Address Tab Information
One of the more useful tasks you can perform with Active Directory is exposing address infor­
mation. This ability is particularly important when a company has more than one location and
more than a few hundred employees. I remember when one of the first uses for an intranet
was to host a centralized list of employees. Such a project quickly paid for itself because com­
panies no longer needed an administrative assistant to modify, copy, collate, and distribute
hundreds of copies of the up-to-date employee directory—potentially a full-time job for one
person. Once an intranet site was in place, personnel at each location were given rights to
modify the list. With Active Directory, you avoid this duplication of work by keeping all infor­
mation in a centralized location. The Address tab in Active Directory Users And Computers is
shown in Figure 12-3.

streetAddress

postOfficeBox

I

st

postalCode

C, co, countryCode

Figure 12-3 Every item on the Address tab in Active Directory Users And Computers can be filled
in via ADSI and VBScript

In the ModifyUserAddressTab.vbs script, you use ADSI to set the street, post office box, city,
state, zip code, c, co, and country values for the User object. Table 12-1 lists the Active Direc­
tory attribute names and their mappings to the Active Directory Users And Computers
(ADUC) management tool “friendly” display names.

Table 12-1 Address Tab Mappings

Active Directory Users And Computers label Active Directory attribute name

Street streetAddress

P.O. Box postOfficeBox

Chapter 12 Writing for ADSI 275
Table 12-1 Address Tab Mappings

Active Directory Users And Computers label Active Directory attribute name

City l (note that this is lowercase L)

State/Province st

Zip/Postal Code postalCode

Country/Region c,co,countryCode

ModifyUserAddressTab.vbs
Option Explicit

On Error Resume Next

Dim strProvider 'defines how will talk

Dim strOU 'path to where new object will be created

Dim strDomain 'name of domain connecting to

Dim strOUName 'user name

Dim objUser 'holds connection to adsi

strProvider = "LDAP://"

strOU = "ou=mred,"

strDomain = "dc=nwtraders,dc=msft"

strOUName = "CN=myNewUser,"

Set objUser = GetObject(strProvider & strOUName & strOU & strDomain)

WScript.Echo strProvider & strOUName & strOU & strDomain ' debug info

objUser.Put "streetAddress", "123 main st"

objUser.Put "postOfficeBox", "po box 12"

objUser.Put "l", "Bedrock"

objUser.Put "st", "Arkansas"

objUser.Put "postalCode" , "12345"

objUser.Put "c", "US"

objUser.Put "co", "United States"

objUser.Put "countryCode", "840"

objUser.SetInfo

If Err.Number = 0 Then

WScript.Echo("User " & strOUName & " was modified")

Else

WScript.Echo "an error occurred. it was: " & Err.Number

End If

Reference Information

The Reference information section assigns values to the variables declared in the script. In this
section, you assign the LDAP provider to the provider variable. You then build the entire OU
path to the ou variable. The domain variable gets assigned both domain components and con­
structs a fully qualified name. You use strOUName to hold the user name you plan to modify.

Worker Information

The Worker information section begins by performing an Active Directory binding:

Set objUser = GetObject(strProvider & strOUName & strOU & strDomain)

276 Part III Advanced Windows Administration
The hardest part of the Worker information section of this script is figuring out how to make
the country assignment show up in ADUC. I will admit that it took me a bit of time before I
realized that the country codes have to be entered in accordance with International Organiza­
tion for Standardization (ISO) standard 3166. If you use the c field, you use the two-letter
country code. If you use ISO standard 3166-1, which contains two-letter country codes that
have been officially assigned, you will be in fine shape. However, 3166-1 also contains country
number assignments and short text names. The alternate forms of country codes do not work
with the c field. ISO 3166 is actually divided into three different parts and is updated on a reg­
ular basis to keep up with global political changes. In compliance with ISO 3166, country
codes can actually be entered in three different ways. The easiest to deal with uses the letter c
as the field and a two-letter country code as the property.

Although ISO 3166-1 specifies all the country codes as uppercase letters, ADSI seems to be
case-agnostic for this field, so us or US will both cause the field to display the name of United
States. (One interesting thing about the ISO 3166-1 codes is that in most cases they are the
same as the national top-level domain names.) A sample two-letter country code sheet based
on ISO 3166-1 is listed in Table 12-2. The full table is available at http://www.iso.org.

Table 12-2 ISO 3166-1 Country Codes

Country code Country name

AF Afghanistan

AU Australia

EG Egypt

LV Latvia

ES Spain

US United States

Staying Put

Filling out the Address tab of the Active Directory Users And Computers user address proper­
ties entails modifying a lot of fields. To do this, you use the Put command, as shown in the fol­
lowing code:

objUser.Put "streetAddress", "123 main st"

objUser.Put "postOfficeBox", "po box 12"

objUser.Put "l", "Bedrock"

objUser.Put "st", "Arkansas"

objUser.Put "postalCode" , "12345"

objUser.Put "c", "US"

objUser.Put "co", "United States"

objUser.Put "countryCode", "840"

Most of the fields are self-explanatory. The only two that do not make much sense are the
small letter l for city and the country code, because of the way you fill it in, which you learned
about earlier.

http://www.iso.org

Chapter 12 Writing for ADSI 277
Warning The three country fields are not linked in Active Directory. You could easily have a
c code value of US, a co code value of Zimbabwe, and a countryCode value of 470 (Malta). This
could occur if someone uses Active Directory Users And Computers to make a change to the
country property. When ADUC is used, it updates all three fields. If someone later runs a script
to only update the countryCode value, or the co code value, then Active Directory Users And
Computers will still reflect the “translated value” of the c code. This could create havoc if your
Enterprise Resource Planning (ERP) application uses the co or countryCode value, and not the
c attribute. Best practice is to update all three fields via your script. Unfortunately, you’re not
always presented with an error; the script just does not seem to update, so you are left (or at
least I am left) clicking the Refresh button in Active Directory Users And Computers as you wait
for a replication event that never seems to take place.

Note Do not forget to use the SetInfo method to commit your changes to Active Directory.
If I seem to harp on this, it’s because I’ve forgotten to do so on occasion, and I want to spare
you the mental agony. This is one occasion when it is easy to commit. You just use this code:
objUser.SetInfo.

Output Information

After creating all those lovely updates, I want to see something to let me know the script has
completed running. Obviously, if you were running this in the scheduler, you wouldn’t want
to present a message box (although you might want to write something to the event log). In
your script, you use a simple WScript.Echo box to let you know the script completed. The
script evaluates the Err object to catch any errors. Note: In this case, we must have On Error
Resume Next turned on (that is, not commented out) or a runtime error will cause the script to
fail before it gets to the Output section of the script. If an error were to occur, we would want
to see the actual error number (Err.Number). The output code follows:

If Err.Number = 0 Then

WScript.Echo("User " & strOUName & " was modified")

Else

WScript.Echo "An error occurred. it was: " & Err.Number

End If

Quick Check

Q. To set the country name on the Address tab for Active Directory Users And Computers,
what is required?

A. To update the country name on the Address tab for Active Directory Users And
Computers, you must specify the c field and feed it a two-letter code that is found in ISO
publication 3166.

278 Part III Advanced Windows Administration
Q. What field name in ADSI is used to specify the city information?

A. You set the city information by assigning a value to the l (lowercase L) field after making
the appropriate connection to Active Directory.

Q. If you put an inappropriate letter code in the c field, what error message is displayed?

A. No error message is displayed. The update simply fails to display in ADUC. If, however, you
go into ADSI Edit, you will see the value stored there. The Active Directory Users And
Computers tool is smart enough to not display codes it does not understand.

Modifying the user profile settings

1.	 Open Microsoft Notepad or some other script editor.

2.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch12\ModifyUserAd­

dressTab.vbs script and save it as YourNameModifyUserProfile.vbs.

3.	 Delete all but four of the Put statements in the Worker section. Once deleted, the Put
statements will look like the following:

objUser.Put "streetAddress", "123 main st"

objUser.Put "postOfficeBox", "po box 12"

objUser.Put "l", "Bedrock"

objUser.Put "st", "Arkansas"

4.	 We are going to assign values for the following four attributes: profilePath, scriptPath,
homeDirectory, and homeDrive. Replace the “old” attributes with the user profile
attributes and assign appropriate values to the attributes. Use folders and scripts acces­
sible on your network, or you can use my values that are listed below:

Set objUser = GetObject(strProvider & strOUName & strOU & strDomain)

WScript.Echo strProvider & strOUName & strOU & strDomain 'debug info

objUser.put "profilePath", "\\London\profiles\myNewUser"

objUser.put "scriptPath", "logon.vbs"

objUser.Put "homeDirectory", "\\london\users\myNewUser"

objUser.Put "homeDrive", "H:"

objUser.SetInfo

5.	 Save and run the script. You should see the Profile tab filled out, as seen in Figure 12-4.
If your script generates errors, compare it with the \My Documents\Microsoft
Press\VBScriptSBS\ch12\ModifyUserProfile.vbs script.

Chapter 12 Writing for ADSI 279
profilePath

scriptPath

homeDirectory homeDrive

Figure 12-4 ADSI attributes used to fill out the Profile tab in Active Directory

Modifying the user telephone settings

1.	 Open Notepad or your favorite script editor.

2.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch12\ModifyUser

AddressTab.vbs script and save it as YourNameModifyTelephoneAttributes.vbs.

3.	 Delete two of the Put statements in the Worker section of the script. After this deletion,
the Put statements will look like the following:

objUser.Put "streetAddress", "123 main st"

objUser.Put "postOfficeBox", "po box 12"

objUser.Put "l", "Bedrock"

objUser.Put "st", "Arkansas"

objUser.Put "postalCode" , "12345"

objUser.Put "c", "US"

4.	 We are going to assign values for the six attributes used to configure the Telephone tab
in the User object in Active Directory. These attributes are: homePhone, pager, mobile,
facsimileTelephoneNumber, ipPhone, and info. Replace the existing attributes from the
Address tab information with the attributes from the Telephone tab. Assign appropriate
values to each attribute, as seen in the completed Worker section below:

Set objUser = GetObject(strProvider & strOUName & strOU & strDomain)

WScript.Echo strProvider & strOUName & strOU & strDomain ' debug info

objUser.put "homePhone", "(215)788-4312"

objUser.put "pager", "(215)788-0112"

objUser.Put "mobile", "(715)654-2341"

280 Part III Advanced Windows Administration
objUser.Put "facsimileTelephoneNumber", "(215)788-3456"

objUser.Put "ipPhone", "192.168.6.112"

objUser.Put "info", "All contact information is confidential, " &_

"and is for official use only."

objUser.SetInfo

5.	 Save and run your script. You should see the Telephone tab filled out, as seen in Figure
12-5. If not, compare your script with the \My Documents\Microsoft Press
\VBScriptSBS\ch12\ModifyTelephoneAttributes.vbs script.

homePhone

pager

mobile

facsimileTelephoneNumber

ipPhone

info

Figure 12-5 Telephone tab attributes found in Active Directory

Creating multiple users

1.	 Open Notepad or your favorite script editor.

2.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch12\CreateUser.vbs script
and save it as YourNameCreateThreeUsers.vbs.

3.	 Declare two new variables in the Header section: strUsers (which will contain a string of
three user names) and aryUsers (which will be an array of user names)—aryUsers will
become an array once the Split function is used on strUsers. The two new variable decla­
ration statements are seen below:

Dim strUsers 'a string of three users here

Dim aryUsers 'an array of users from SPLIT

4.	 In the Reference section, assign three user names to the strUsers variable: myBoss,

myDirect1, and myDirect2. This is seen in the following code:

strUsers = "cn=MyBoss,cn=MyDirect1,cn=MyDirect2"

Chapter 12 Writing for ADSI 281
5.	 Assign aryUsers to hold the array that is created by using the Split function on the “strUs­
ers” string when we break the string at the comma character. This is seen below:

aryUsers = Split(strUsers,",")

6.	 Instead of hardcoding the value of strOUname, we will assign values to it by using For
Each…Next to walk through the array. Place this code directly under strClass = "User".
This is seen below.

For Each strOUname In aryUsers

7.	 Delete the strOUname= "cn=MyNewUser" line.

8.	 Add the Next statement after you call objOU.SetInfo.

9.	 Just above the Next statement and immediately following objOU.SetInfo, call the subError
subroutine. The placement is seen here:

objOU.SetInfo

subError

Next

10.	 Turn the error handler into a subroutine called subError. To do this, use the Sub state­
ment followed by the name subError. End your subroutine with the End Sub statement.
This is seen here:

Sub subError

If Err.number = 0 Then

WScript.Echo(strOUname & " was created")

Else If Err.number = "-2147019886" Then

WScript.Echo strOUname & " already exists"

Else

WScript.Echo " error on the play " & Err.Number

End If

End If

End sub

11.	 Save and run your script. You should see three new users created in the Mred OU. If they
are not, compare your script with CreateThreeUsers.vbs.

Modifying the organizational settings

1.	 Open Notepad or your favorite script editor.

2.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch12\ModifyUserAd­

dressTab.vbs script and save it as YourNameModifyOrganizationPage.vbs.

3.	 Delete all but four of the Put statements in the Worker section of the script. After this
deletion, the Put statements will look like the following:

objUser.Put "streetAddress", "123 main st"

objUser.Put "postOfficeBox", "po box 12"

objUser.Put "l", "Bedrock"

objUser.Put "st", "Arkansas"

282 Part III Advanced Windows Administration
4.	 We are going to assign values to the four attributes used to configure the Organization
tab of the User object in Active Directory. These attributes are: title, department, company,
and strManager. Replace the existing attributes from the Address tab information with
the attributes from the Worker section, as seen below:

Set objUser = GetObject(strProvider & strOUName & strOU & strDomain)

WScript.Echo strProvider & strOUName & strOU & strDomain 'debug info

objUser.Put "title", "Mid-Level Manager"

objUser.Put "department", "Sales"

objUser.Put "company", "North Wind Traders"

objUser.Put "manager", strManager & strOU & strdomain

objUser.SetInfo

5.	 In the Reference section of your script, assign a value for the strManager variable.
MyNewUser’s boss is named MyBoss and was created when we created the three users
in the previous exercise.

strManager = "cn=MyBoss,"

6.	 Save and run your script. The Organization tab should be filled out and look like Figure
12-6. If it does not, then compare your script with the \My Documents\Microsoft
Press\VBScriptSBS\ch12\ModifyOrganizationalPage.vbs script.

Figure 12-6 Organizational attributes in Active Directory

Title

Department

Company

Manager

DirectReports

Chapter 12 Writing for ADSI 283
Modifying Terminal Server Settings

One of the big problems users of Microsoft Terminal Services faced in the Windows 2000
days was the inability to modify Terminal Server profile information via a script. This was par­
ticularly frustrating because the information appeared on a tab in Active Directory Users And
Computers—causing many administrators to assume the information was “in Active Direc­
tory” and that it should be accessible through ADSI scripting. In Windows Server 2003, a new
interface was introduced that enables ADSI scripting to edit Terminal Server settings. This
interface is called the IADsTSUserEx, and it exposes the properties listed in Table 12-3.

Table 12-3 Terminal Server Setting Properties

Property Meaning Value

TerminalServicesProfilePath Roaming or mandatory profile
path to use when the user logs on
to the Terminal Server

Disabled = 0,
Enabled = 1

TerminalServicesHomeDirectory Home directory for the user UNC path to directory

TerminalServicesHomeDrive Home drive for the user Drive letter followed by co­
lon

AllowLogon Value that specifies whether the
user is allowed to log on to the
Terminal Server

Disabled = 0,
Enabled = 1

EnableRemoteControl Value that specifies whether to
allow remote observation or
remote control of the user's
Terminal Services session

Disable = 0,
EnableInputNotify = 1,
EnableInputNoNotify = 2,
EnableNoInputNotify = 3,
EnableNoInputNoNotify = 4

MaxDisconnectionTime Maximum amount of time a Time in minutes
disconnected session remains
viable

MaxConnectionTime Maximum duration of a Time in minutes
connection

MaxIdleTime Maximum amount of time a Time in minutes
session can remain idle

ReconnectionAction Value that specifies whether to
allow reconnection to a discon­
nected Terminal Services session

Any Client = 0,
Originating client = 1

from any client computer

BrokenConnectionAction Value that specifies the action to
take when a Terminal Services

Disconnect = 0,
End Session = 1

session limit is reached

ConnectClientDrivesAtLogon Value that specifies whether to
reconnect to mapped client drives
at logon

Disabled = 0, Enabled = 1

284 Part III Advanced Windows Administration
Table 12-3 Terminal Server Setting Properties

Property Meaning Value

ConnectClientPrintersAtLogon Value that specifies whether to
reconnect to mapped client print­
ers at logon

Disabled = 0, Enabled = 1

DefaultToMainPrinter Value that specifies whether to
print automatically to the client's
default printer

Disabled = 0, Enabled = 1

TerminalServicesWorkDirectory Working directory path for the
user

UNC path to directory

TerminalServicesInitialProgram Path and file name of the applica­
tion that the user wants to start
automatically when the user logs
on to the Terminal Server

UNC path to directory

The following script, ModifyTerminalServerProperties.vbs, will assign values to all of the avail­
able properties for a user Terminal Server profile. Please keep in mind, this script requires
access to a Windows Server 2003 machine, and you will need to give the script the appropri­
ate name for both the User object and the server itself. Also remember that under normal cir­
cumstances, one would not need to assign values to all of these properties, because many of
them can be set server side, instead of user side. One reason, however, for assigning values on
the user side of the equation is that under certain circumstances, a network administrator
wants to allow the user settings to override the “default” server settings.

In the ModifyTerminalServerProperties.vbs script, all of the property values have been
abstracted into constants that are assigned values in the Reference section of the script. This
was done to facilitate modifying the script in the future, as well as to provide a better place for
script documentation. In the version of this script in the \My Documents\Microsoft
Press\VBScriptSBS\CD-ROM\ch12 folder, the script is fully commented (most comments in
the script below have been removed for clarity).

ModifyTerminalServerProperties.vbs
Option Explicit

On Error Resume Next

Dim strProvider 'defines how will talk

Dim strOU 'path to where object is located

Dim strDomain 'name of domain connecting to

Dim strOUName 'user name

Dim objUser 'holds connection to ADSI

strProvider = "LDAP://"

strOU = "ou=mred,"

strDomain = "dc=nwtraders,dc=msft"

strOUName = "cn=myNewUser,"

Const blnENABLED = 1

Const blnBROKEN_CONNECTION = 1

Const blnRECONNECTION = 1

Const intREMOTE_CONTROL = 1

Chapter 12 Writing for ADSI 285
Const intMAX_CONNECTION=60

Const intMAX_DISCONNECT=6

Const intMAX_IDLE=10

Const strHOME_DIR = "\\London\Shared\"

Const strHOME_DRIVE = "t:"

Const strPROFILE_PATH = "\\London\Profiles\"

Const strINIT_PROG = "notepad.exe"

Const strWORK_DIR = "\\London\Profiles\"

Const strTEMP_DIR = "\tmp"

Set objUser = GetObject(strProvider & strOUName & strOU & strDomain)

'Terminal Services Profile tab

objUser.AllowLogon = blnENABLED

objUser.TerminalServicesHomeDirectory = strHOME_DIR & funfix(strOUName)

objUser.TerminalServicesHomeDrive = strHOME_DRIVE

objUser.TerminalServicesProfilePath = strPROFILE_PATH & funfix(strOUname)

'Remote control tab. This property sets ALL 4 controls on the tab

objUser.EnableRemoteControl = intREMOTE_CONTROL

'Sessions tab

objUser.BrokenConnectionAction = blnBROKEN_CONNECTION

objUser.MaxConnectionTime = intMAX_CONNECTION

objUser.MaxDisconnectionTime = intMAX_DISCONNECT

objUser.MaxIdleTime = intMAX_IDLE

objUser.ReconnectionAction = blnRECONNECTION

'Environment tab

objUser.ConnectClientDrivesAtLogon = blnENABLED

objUser.ConnectClientPrintersAtLogon = blnENABLED

objUser.DefaultToMainPrinter = blnENABLED

objUser.TerminalServicesInitialProgram = strINIT_PROG

objUser.TerminalServicesWorkDirectory = strWORK_DIR & funfix(strOUname) & strTEMP_DIR

objUser.SetInfo

subError

'***************** Subs and Functions are below **************

Sub subError

If Err.Number = 0 Then

WScript.Echo("User " & funFix(strOUName) & " was modified")

Else

WScript.Echo "An error occurred. It was: " & Err.Number

End If

End sub

Function funfix (strin)

funFix = Mid(strin,4)

funfix = Mid(funFix,1,Len(funFix)-1)

End Function

Modifying the Terminal Server user profile settings

1.	 Open Notepad or some other script editor.

2.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch12\ModifyUserAd­
dressTab.vbs script and save it as YourNameModifyTerminalServerProfile.vbs.

286 Part III Advanced Windows Administration
3.	 In the Reference section of your script, under the strOUName= "CN=MyNewUser" line,
add a constant blnENABLED and set it equal to one.

4.	 On the next line, define a constant called strHOME_DIR and set it equal to

"\\London\Shared\".

5.	 On the next line, define a constant called strHOME_DRIVE and set it equal to "t:".

6.	 On the next line, define a constant called strPROFILE_PATH and set it equal to

"\\London\Profiles\".

7.	 The completed Reference section will look like the following:

strProvider = "LDAP://"

strOU = "ou=mred,"

strDomain = "dc=nwtraders,dc=msft"

strOUName = "cn=myNewUser,"

Const blnENABLED = 1

Const strHOME_DIR = "\\London\Shared\"

Const strHOME_DRIVE = "t:"

Const strPROFILE_PATH = "\\London\Profiles\"

8.	 Delete WScript.Echo and all the objUser commands except for the objUser.SetInfo com­
mand under the Set objUser line. Your revised Worker and Output section will now look
like the following:

Set objUser = GetObject(strProvider & strOUName & strOU & strDomain)

objUser.SetInfo

If Err.Number = 0 Then

WScript.Echo("User " & strOUName & " was modified")

Else

WScript.Echo "An error occurred. it was: " & Err.Number

End If

9.	 Turn on allow logon by assigning the blnENABLED value to objUser.AllowLogon, as seen
below:

objUser.AllowLogon = blnENABLED

10.	 Set the terminal server home directory by assigning the strHOME_DIR value to
objUser.TerminalServicesHomeDirectory, as seen below. Use the funfix function to clean
up the user name. (Note: We have not yet created the funfix function!)

objUser.TerminalServicesHomeDirectory = strHOME_DIR & funfix(strOUName)

11.	 Set the terminal server home drive letter by assigning the strHOME_DRIVE constant to
objUser.TerminalServicesHomeDrive, as seen below:

objUser.TerminalServicesHomeDrive = strHOME_DRIVE

Chapter 12 Writing for ADSI 287
12.	 Set the profile path for the terminal server user by assigning the strPROFILE_PATH
constant to objUser.TerminalServicesProfilePath. Use the funfix function to clean up the
username.

objUser.TerminalServicesProfilePath = strPROFILE_PATH & funfix(strOUname)

13.	 Turn the If Err.Number section of code into a subroutine. Do this by adding Sub subError
above the section of code, and End sub at the bottom of the code. It will look like the fol­
lowing when completed.

Sub subError

If Err.Number = 0 Then

WScript.Echo("User " & funFix(strOUName) & " was modified")

Else

WScript.Echo "An error occurred. It was: " & Err.Number

End If

End sub

14.	 On the line following objUser.SetInfo call the subError subroutine. This is seen in the
code below:

subError

15.	 Copy the funfix function from the \My Documents\Microsoft Press\VBScriptSBS\
Utilities\Funfix.vbs script to the bottom of your script. The funfix function looks like the
following:

Function funfix (strin)

funFix = Mid(strin,4) 'removes cn= from strOUName to give username

funfix = Mid(funFix,1,Len(funFix)-1) 'removes "," from end of strOUName

End Function

16.	 Save and run your script. If there are problems, compare it with the

ModifyTerminalServerProfile.vbs script in the Chapter 12 folder.

Deleting Users
There are times when you need to delete user accounts, and with ADSI you can very easily
delete large numbers of users with a single click of the mouse. Some reasons for deleting user
accounts are:

■	 To clean up a computer lab environment, that is, to return machines to a known state.

■	 To clean up accounts at the end of a school year. Many schools delete all student-related
accounts and files at the end of each year. Scripting makes it easy to both create and
delete the accounts.

288 Part III Advanced Windows Administration
■	 To clean up temporary accounts created for special projects. If the creation of accounts
is scripted, their deletion can also be scripted, ensuring no temporary accounts are left
lingering in the directory.

Just the Steps To delete users

1. Perform the binding to the appropriate OU.

2. Use GetObject to make a connection.

3. Specify the appropriate provider and ADsPath.

4. Call the Delete method.

5. Specify object class as User.

6. Specify the user to delete by CN.

To delete a user, call the Delete method after binding to the appropriate level in the Active
Directory namespace. Then specify both the object class, which in this case is User, and the
CN of the user to be deleted. This can actually be accomplished in only two lines of code:

Set objDomain = GetObject(provider & ou & domain)

objDomain.Delete oClass, oCn & oUname

If you modify the CreateUser.vbs script, you can easily transform it into the DeleteUser.vbs
script, which follows. Notice that the Reference information section is basically the same. It
holds the path to the OU and the path to the user in the variables, enabling you to modify the
script more easily. The main change is in the Worker section of the script. The binding string
is the same as seen earlier. However, you use the connection that was made in the binding
string and call the Delete method. You specify the class of the object in the oClass variable in
the Reference section of the script. You also list the oUname and cn= parts as well. The syntax
is Delete(Class, target). The deletion takes effect immediately. No SetInfo command is required.

DeleteUser.vbs
Option Explicit

'On Error Resume Next

Dim strProvider 'defines how will talk

Dim strOU 'path to where new object will be created

Dim strDomain 'name of strDomain connecting to

Dim strClass 'the class of object we are creating

Dim strOUname 'name of object are creating

Dim objDomain 'holds connection to adsi

Dim objOU 'holds handle to create method

strprovider = "LDAP://"

strOU = "OU=mred," 'when using is OU=mred, THE , would be required.

strDomain = "dc=nwtraders,dc=msft"

strClass = "User"

strOUname = "CN=MyNewUser"

Chapter 12 Writing for ADSI 289
Set objDomain = GetObject(strProvider & strOU & strDomain)

objDomain.Delete strClass, strOUname

If Err.number = 0 Then

WScript.Echo(strOUname & " was deleted")

Else If Err.number = "-2147016656" Then

WScript.echo strOUname & " does not exist"

Else

WScript.echo " error on the play " & Err.Number

End If

End If

Deleting Users Step-by-Step Exercises
In this section, you will practice deleting users. You begin with a starter file that is used to cre­
ate the user. This is a good practice because you can ensure that all created users get deleted
when the time comes. While working on your script, if you need to run the script several
times, you can use the \My Documents\Microsoft Press\VBScriptSBS\ch12\Step-
ByStep\sbsStarter.vbs file to create your user prior to deleting the user. If the user isn’t present
when you try deletion, you get an error.

1.	 Open Notepad or your favorite script editor.

2.	 Open sbsStarter.vbs and save it as YourNameDeleteUser.vbs.

3.	 Delete the declaration for the variable objUser.

4.	 Delete three of the four lines that call objUser in the Worker information section of the
script. These lines look like the following:

objUser.Put "sAMAccountName", oUname

objUser.Put "DisplayName", oUname

objUser.SetInfo

5.	 Locate the Set objUser line initially used to create the user so that the line now deletes
the user instead. The original line looks like the following:

Set objUser = objDomain.create(oClass, oCn & oUname)

6. Remove the Set objUser portion of the line. It will now look like the following:

objDomain.create(oClass, oCn & oUname)

7.	 Change the method called in the preceding line from Create to Delete. The line will now
look like the following:

objDomain.Delete(oClass, oCn & oUname)

8.	 Save your work. If you try to run the script now, you’ll get an error because you need to
remove the parentheses. Once removed, the code looks like the following:

objDomain.Delete oClass, oCn & oUname

290 Part III Advanced Windows Administration
9.	 Change the output message so that it says deleted instead of created. It looks like the fol­
lowing once the change is implemented:

WScript.Echo("User " & oUname & " was deleted")

10.	 Save your work.

11.	 Open Active Directory Users And Computers to verify that LabUser was deleted.

12.	 Run the script. If it fails, run the starter script to ensure there is a user on the server. After
this is done, run the script to see whether it works. When it does, run the sbsStarter.vbs
script again, because you’ll need the user for the next exercise. If it does not run cor­
rectly, compare your script with the DeleteUser.vbs script in the Chapter 12 Step-by-Step
folder.

One Step Further: Using the Event Log
In this exercise, you modify the delete user script from the previous step-by-step exercise and
write the resulting output to the event log instead of to a pop-up dialog box. This results in an
enterprise type of solution because the script could be scheduled, or the script might delete a
large number of users, in which case writing output to a dialog box or even to a command
prompt would be impractical. The event log always exists, so it is a convenient place to log
information. Only three lines of code are required to implement writing to the event log.

1.	 Open Notepad or your favorite script editor.

2.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch12\OneStepFurther
\DeleteUser.vbs file and save it as YourNameDeleteUserLogged.vbs. This will ensure
you have a fresh working copy of the script and will give you a fallback option if
required.

3.	 If MyNewUser does not exist in the MrEd OU, then run the CreateUser.vbs script to cre­
ate the user you will be deleting.

4.	 Delete the WScript.Echo line that is at the bottom of the script. This line looks like the
following:

WScript.Echo("User " & oUname & " was deleted")

5.	 Add two new variables. The first variable is objShell and is used to hold the connection
to the scripting shell object. The second variable is oMessage and holds the text of the
message you write to the event log. These two declarations look like the following:

Dim objShell 'holds connection to scripting shell

Dim oMessage 'holds text of the message we write

6.	 Assign the value oUname & "was deleted" to the oMessage variable.

oMessage = oUname & " was deleted"

7.	 Now define a constant called EVENT_SUCCESS and set it equal to 0. The code to do this
looks like the following:

Chapter 12 Writing for ADSI 291
Const EVENT_SUCCESS = 0

8.	 Save your work.

9.	 At the bottom of the script where the WScript.Echo command used to reside, use the Cre­
ateObject method to create an instance of the scripting shell. Set the handle equal to
objShell. The code to do this looks like the following:

Set objShell = CreateObject("WScript.Shell")

10.	 Use the LogEvent method to write your message to the event log. You’re interested in
only a return code of 0, which indicates a success. (Complete information on the
LogEvent method is available in the WSH 5.6 help file, script56.chm, in \My Documents
\Microsoft Press\VBScriptSBS\Resources.) The code looks like the following:

objShell.LogEvent EVENT_SUCCESS, oMessage

11.	 Save the script and run it.

12.	 Notice that there is no feedback. However, if you open the application log on the
machine running the script, you see the event message. This is quite useful because the
event message allows you to log updates as well as to audit them. The log looks like the
one in Figure 12-7.

Figure 12-7 Use the LogEvent method to write scripts that provide notification and don’t
require user intervention

13.	 Open Active Directory Users And Computers to verify the user was deleted.

14.	 If your script does not perform as expected, compare your script with the
DeleteUserLogged.vbs script in the Chapter 12 One Step Further folder.

292 Part III Advanced Windows Administration
Chapter 12 Quick Reference

To Do This

Easily delete users Modify the script you used to create the user and
change the Create method to Delete

Commit changes to Active Directory when Nothing special is required; changes take place
deleting a user when deleted

Find country codes used in Active Directory Use ISO 3166
Users And Computers

Modify a user’s first name via ADSI	 Add a value to the GivenName attribute; use the
SetInfo method to write the change to Active
Directory

Overwrite a field that is already populated in Use the Put method
Active Directory

Modify terminal server profile settings in Use the IADsTSUserEx object
Active Directory

Assign a value to a terminal server profile Assign the value to the property; no need to use
attribute after making a connection into the Put method
Active Directory

Delete the value of an attribute in Active Use the Delete method
Directory

Chapter 13

Using ADO to Perform Searches

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the fol­
lowing concepts from earlier chapters:

■ Active Directory Service Interfaces (ADSI) binding operations

■ ADSI namespace

■ Creating a dictionary object

■ Implementing the For Each…Next construction

■ Implementing the Select Case construction

■ Implementing the While Not Wend construction

After completing this chapter, you will be able to:

■ Connect to Microsoft Active Directory directory service to perform a search

■ Control the way data is returned

■ Use compound query filters

■ Search Microsoft Excel, Access, and text files

Connecting to Active Directory to Perform a Search
In this section, you are going to use a special query technique to search Active Directory. You’ll
be able to use the results returned by that custom query to perform additional tasks. For
example, you could search Active Directory for all users who don’t have telephone numbers
assigned to them. You could then send that list to the person in charge of maintaining the tele­
phone numbers. Even better, you could modify the search so that it returns the users’ names
and their managers’ names. You could then take the list of users with no phone numbers that
is returned and send e-mail to the managers to get the phone list in Active Directory updated.
The functionality incorporated in your scripts is primarily limited by your imagination. The
following summarizes uses for search technology:

■ Query Active Directory for a list of computers that meet a given search criterion

■ Query Active Directory for a list of users who meet a given search criterion
293

294 Part III Advanced Windows Administration
■	 Query Active Directory for a list of printers that meet a given search criterion

■	 Use the data returned from the preceding three queries to perform additional opera­
tions

Just the Steps To search Active Directory

1. Create a connection to Active Directory by using Microsoft ActiveX Data Objects (ADO).

2. Use the Open method of the object to access Active Directory.

3. Create an ADO command object and assign the ActiveConnection property to the con­
nection object.

4. Assign the query string to the CommandText property of the command object.

5. Use the Execute method to run the query and store the results in a RecordSet object.

6. Read information in the result set using properties of the RecordSet object.

7. Close the connection by using the Close method of the connection object.

The following script, BasicQuery.vbs, illustrates how to search using Active Directory. This
script follows the steps detailed in the “Just the Steps: To search Active Directory” section.

BasicQuery.vbs
Option Explicit

On Error Resume Next

Dim strQuery

Dim objConnection

Dim objCommand

Dim objRecordSet

strQuery = "<LDAP://dc=Nwtraders,dc=msft;;name;subtree"

Set objConnection = CreateObject("ADODB.Connection")

Set objCommand = CreateObject("ADODB.Command")

objConnection.Open "Provider=ADsDSOObject;"

objCommand.ActiveConnection = objConnection

objCommand.CommandText = strQuery

Set objRecordSet = objCommand.Execute

While Not objRecordSet.EOF

WScript.Echo objRecordSet.Fields("name")

objRecordSet.MoveNext

Wend

objConnection.Close

In the BasicQuery.vbs script, you define your query after using the normal Option Explicit and
On Error Resume Next commands. You then assign the query string to the variable called
strQuery. The syntax of the query looks similar to the syntax you used to query Windows
Management Instrumentation (WMI) in Chapter 9, “WMI Continued,” and it follows a for­
mula similar to that used with structured query language (SQL). The aspect of this syntax that

Chapter 13 Using ADO to Perform Searches 295
is somewhat unusual is assigning a search string to a CommandText property If you envision
the statement as stating that the command you want to execute is in the form of the query,
perhaps the syntax will make a little more sense.

The query actually consists of two parts. The first part of the query is contained in angle
brackets (< >) and specifies both the provider to use and the Lightweight Directory Access
Protocol (LDAP) name of the container to which you want to connect. The second part of the
query lists the fields you want to return in the result set.

Note The BasicQuery.vbs script query we’re examining follows the same syntax you would
use for an (ADO) search. ADO is a standard for connecting and querying different types of data
sources. The basic syntax of an ADO connection is discussed in the “Creating More Effective
Queries” section of this chapter, and it is highlighted in Table 13-1.

Header Information

The Header information section of the BasicQuery.vbs script contains the Option Explicit com­
mand as the first line and On Error Resume Next on the next line, which causes the script to
continue executing lines after an error occurs. The following lines of the script detail all the
variables that have been declared in the script:

Dim strQuery

Dim objConnection

Dim objCommand

Dim objRecordSet

Reference Information

The Reference information section of the script is used to define the LDAP query, as shown in
the following code:

strQuery = "<LDAP://dc=Nwtraders,dc=msft>;;name;subtree"

The strQuery variable is used to define the query you will submit to Active Directory. In this
instance, you’re interested in the Name attribute, which is specified following two semicolons.
The subtree part of the query tells Microsoft Visual Basic, Scripting Edition (VBScript) the
scope of your query. The subtree modifier means that you want to search the subtree found
under the target that you specified in the LDAP portion of the query. You define the starting
point of your search by using angle brackets and the LDAP syntax. In this case, you start your
search at the root of nwtraders.msft, and you’re interested in returning the Name attribute from
every object in the subtree—which means searching the entire hierarchy.

296 Part III Advanced Windows Administration
Worker and Output Information

Set objConnection creates a connection object that will be used to connect to Active Directory.
Specifying ADODB means you will use the ActiveX Data Objects (ADO) technology to talk to
Active Directory. The CreateObject method creates an instance of the ADO connection object
in memory.

Now that you have a connection object resident in memory (named ObjConnection), you can
create a command object that will be used to shuttle a query into Active Directory. You name
this command object objCommand and set it equal to the object you get when you call
ADODB.Command.

Having created the command object, you’re now ready to open the connection to Active Direc­
tory. In this case, you use the ADsDSOObject provider. Because you can use ADO to talk to dif­
ferent data sources, you must specify which data provider to use when opening the
connection. Here’s an analogy to help you understand why you must specify a particular data
provider when opening a connection. Think of opening a connection as being like opening a
can of food in your kitchen. In most cases, the standard wheel type of can opener provides the
needed leverage, such as removing the entire top of a can for a can of catfood. At times, how­
ever, you might need a different type of can opener, such as the kind that pokes holes in the
top of the can to enable you to pour out liquid such as a can of orange juice. In the same way,
depending on your data source, you might need to use a different provider. When talking to
Active Directory, you will always use the ADsDSOObject provider.

Next, you need to define which connection to use for the command object. In this instance,
you tell VBScript to use objConnection as the active connection. After telling VBScript to use
objConnection as the active connection, specify the query to use by assigning the value of the
strQuery variable to commandText.

Now you have a query, a connection, a command, a provider, an active connection, and com­
mand text. All that is left is to execute the command, which you do by using the following
code:

Set objRecordSet = objCommand.Execute

You use the Execute method of the command object and set the data that comes back equal to
the variable called objRecordSet.

The Worker information section of the BasicQuery.vbs script is used to iterate through the
recordset that was returned when you used the Execute method of objCommand. In this
instance, you use the While Not Wend construction to echo out the name field. The While Not
Wend control structure enables you to know whether you’ve reached the end of the Recordset
The recoredset has a property called EOF, that indicates the current record position is after
the last record in the record set object.) If you haven’t reached the EOF property you echo out
the name retrieved by the initial query. After you echo out the name, you move to the next
record in the record set. Here’s the code that illustrates this process:

Chapter 13 Using ADO to Perform Searches 297
Set objConnection = CreateObject("ADODB.Connection")

Set objCommand = CreateObject("ADODB.Command")

objConnection.Open "Provider=ADsDSOObject;"

objCommand.ActiveConnection = objConnection

objCommand.CommandText = strQuery

Set objRecordSet = objCommand.Execute

While Not objRecordSet.EOF

WScript.Echo objRecordSet.Fields("name")

objRecordSet.MoveNext

Wend

objConnection.Close

The Output information section of BasicQuery.vbs does a very simple WScript.Echo output
that indicates the result of the search. In more advanced scripts, you might want to write to a
text file, a database, or even a Web page. After you produce output for all your information,
you close the active connection by using objConnection.Close.

Quick Check

Q. What technology is used to search Active Directory?

A. ADO is used to search Active Directory.

Q. Which part of the script is used to perform the query?

A. The command portion of the script is used to perform the query.

Q. How are results returned from an ADO search of Active Directory?

A. The results are returned in a record set.

Creating More Effective Queries
Effective querying of Active Directory requires that you understand more about ADO
searches. Table 13-1 lists the objects that are associated with searching Active Directory.

Table 13-1 Objects used to search Active Directory

Object Description

Connection An open connection to an OLE DB data source such as ADSI

Command Defines a specific command to execute against the data source

Parameter An optional collection used to supply parameters to the command object

RecordSet A set of records from a table, a command object, or SQL syntax; can be created
without any underlying Connection object

Field A single column of data in a record set

Property A collection of values supplied by the provider for ADO

Error Contains details about data access errors; refreshed when an error occurs in a
single operation

298 Part III Advanced Windows Administration
For ADO to talk with ADSI, two objects are required. The first object is the connection object,
and the second object is the RecordSet. The command object is used to maintain the connec­
tion, pass along the query parameters, and perform such tasks as specifying the page size and
search scope and executing the query. The Connection object is used to load the provider and
to validate the user’s credentials. By default, it uses the credentials of the currently logged-on
user. If you need to specify alternative credentials, you can use the properties listed in Table
13-2.

Table 13-2 Authentication properties for the Connection object

Property Description

User ID	 A string that identifies the user whose security context is used when perform­
ing the search. (For more information about the format of the user name
string, see IADsOpenDSObject::OpenDSObject in the Platform SDK.) If the
value is not specified, the default is the logged-on user or the user imperson­
ated by the calling process.

Password A string that specifies the password of the user identified by “User ID.”

Encrypt Password A Boolean value that specifies whether the password is encrypted. The default
is False.

ADSI Flag A set of flags from the ADS_AUTHENTICATION_ENUM enumeration. The flag
specifies the binding authentication options. The default is zero.

A number of search options are available to the network administrator. The use of these search
options will have a large impact on the performance of your queries against Active Directory.
It is imperative, therefore, that you learn to use the following options. Obviously, not all
options need to be specified in each situation. In fact, in many situations, the defaults will per­
form just fine. However, if a query is taking a long time to complete, or you seem to be flood­
ing the network with unexpected traffic, you might want to examine the search properties in
Table 13-3.

Note that you should specify a page size. In Windows Server 2003, Active Directory is limited
to returning 1,500 objects from the results of a query when no page size is specified. The Page
Size property tells Active Directory how many objects to return at a time. When this property
is specified, there is no limit on the number of returned objects Active Directory can provide.
If you specify a size limit, the page size must be smaller.

Table 13-3 ADO search properties

Property Description

Asynchronous	 A Boolean value that specifies whether the search is synchronous or asyn­
chronous. The default is False (synchronous). A synchronous search blocks
until the server returns the entire result (or for a paged search, the entire
page). An asynchronous search blocks until one row of the search results is
available, or until the time specified by the Timeout property elapses.

Cache results	 A Boolean value that specifies whether the result should be cached on the
client side. The default is True; ADSI caches the result set. Turning off this
option might be desirable for large result sets.

Chapter 13 Using ADO to Perform Searches 299
Table 13-3 ADO search properties

Property Description

Chase referrals A value from ADS_CHASE_REFERRALS_ENUM that specifies how the search
chases referrals. The default is ADS_CHASE_REFERRALS_ EXTERNAL.

Column Names Only A Boolean value that indicates that the search should retrieve only the
name of attributes to which values have been assigned. The default is False.

Deref Aliases A Boolean value that specifies whether aliases of found objects are resolved.
The default is False.

Page size An integer value that turns on paging and specifies the maximum number
of objects to return in a result set. The default is no page size. (For more in­
formation, see PageSize in the Platform SDK.)

SearchScope A value from the ADS_SCOPEENUM enumeration that specifies the search
scope. The default is ADS_SCOPE_SUBTREE.

Size Limit An integer value that specifies the size limit for the search. For Active Direc­
tory, the size limit specifies the maximum number of returned objects. The
server stops searching once the size limit is reached and returns the results
accumulated up to that point. The default is no limit.

Sort on A string that specifies a comma-separated list of attributes to use as sort
keys. This property works only for directory servers that support the LDAP
control for server-side sorting. Active Directory supports the sort control,
but this control can have an impact on server performance, particularly
when the result set is large. Be aware that Active Directory supports only a
single sort key. The default is no sorting.

Time Limit An integer value that specifies the time limit, in seconds, for the search.
When the time limit is reached, the server stops searching and returns the
results accumulated to that point. The default is no time limit.

Timeout An integer value that specifies the client-side timeout value, in seconds. This
value indicates the time the client waits for results from the server before
quitting the search. The default is no timeout.

Searching for Specific Types of Objects
One of the best ways to improve the performance of Active Directory searches is to limit the
scope of the search operation. Fortunately, searching for a specific type of object is one of the
easiest tasks to perform. For example, to perform a task on a group of computers, limit your
search to the Computer class of objects. To work with only groups, users, computers, or print­
ers, specify objectClass or objectCategory in the search filter. The objectCategory attribute is a
single value that specifies the class from which the object in Active Directory is derived. Users
are derived from an object category called users. All the classes you looked at in the last chap­
ter (users, computers) are defined in the schema as values for the objectCategory attribute.
When you create a new user, Active Directory identifies the attributes the user class contains.
Then it uses those attributes when the new user is created. In this way, all users have the same
attributes available to them. The attribute called objectClass is a multivalued attribute, and as

300 Part III Advanced Windows Administration
you learned in the discussion of WMI, you have to use a For…Next statement to iterate all
instances of values contained in the multivalued attribute.

Just the Steps To limit the Active Directory search

1. Create a connection to Active Directory by using ADO.

2. Use the Open method of the connection object to access Active Directory.

3. Create an ADO command object and assign it to the ActiveConnection property of the
Connection object.

4. In the query string, specify the object category of the target query.

5. Choose specific fields of data to return in response to the query.

6. Assign the query string to the CommandText property of the Command object.

7. Use the Execute method to run the query and store the results in a RecordSet object.

8. Read information in the result set using properties of the RecordSet object.

9. Close the connection by using the Close method of the connection object.

In the FilterComputers.vbs script, you use ADO to query Active Directory with the goal of
returning a record set containing selected properties from all the computers with accounts in
the directory. The Header information and Worker information sections of the script are the
same as in the previous script, so we won’t discuss them.

FilterComputers.vbs
Option Explicit

On Error Resume Next

dim strQuery

dim objConnection

dim objCommand

dim objRecordSet

strQuery = "<LDAP://dc=nwtraders,dc=msft>;" & _

"(objectCategory=computer);" &_

"name,distinguishedName;subtree"

Set objConnection = CreateObject("ADODB.Connection")

Set objCommand = CreateObject("ADODB.Command")

objConnection.Open "Provider=ADsDSOObject;"

objCommand.ActiveConnection = objConnection

objCommand.CommandText = strQuery

Set objRecordSet = objCommand.Execute

Do until objRecordSet.EOF

WScript.Echo objRecordSet("name"), objRecordSet("distinguishedName")

objrecordset.MoveNext

loop

objConnection.Close

Chapter 13 Using ADO to Perform Searches 301
Reference Information

The Reference information section is basically the same as in the previous script, with the
exception of the query. You call the query strQuery in this script, as shown here:

strQuery = "<LDAP://dc=nwtraders,dc=msft>;" & _

"(objectCategory=computer);" &_

"name,distinguishedName;subtree"

You can see the power of using the ADO connection to query Active Directory. You choose a
couple of attributes from the dozens of available attributes associated with the Computer
object in Active Directory. This makes an efficient query because you return only the desired
information.

Output Information

The alert reader will realize that we’ve returned data on two attributes of the Computer object:
the distinguishedName and the name of the computer. The Output information section of the
script looks like the following:

WScript.Echo objRecordSet("name"), objRecordSet("distinguishedName")

At this point, it is sufficient to illustrate how to write data from the record set. You use the Echo
command to send the data out, but the interesting part is you specify the field by name. It is
perhaps confusing here that the field you are sending out is called name. To send out the dis­
tinguishedName field, put distinguishedName in quotation marks. We are actually specifying
the Field property of the record set, but because it is the default property, we do not need to
list it in our reference to objRecordSet. This also gives us the ability to specify two attributes at
the same time, as seen in our output line.

Quick Check

Q. What is one way to limit the amount of data returned by an ADO query of Active
Directory?

A. To limit the amount of data returned by an ADO query of Active Directory, you can specify
objectCategory, which is easy to do. In this way, you can limit searches to just computers,
users, printers, or other objects in Active Directory.

Q. To specify an alternate set of credentials or to encrypt the password, what must be
done in your script?

A. To specify an alternate set of credentials or to encrypt the password, you must use the
authentication properties of the connection object.

Q. What two items must be specified for ADO to talk to Active Directory?

A. The two items that must be specified for ADO to talk to Active Directory are the
connection string and record set. All other fields are optional.

302 Part III Advanced Windows Administration
Querying multiple attributes

1.	 Open Microsoft Notepad or your favorite script editor.

2.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch13\FilterComputers.vbs and
save it as YourNameFilterComputersByName.vbs.

3.	 Edit the strQuery line to add an additional attribute to the filter. On the second line, add
an extra set of parentheses around (objectCategory=computer) to hold the extra attribute.
Your filter will now look like:

((objectCategory=computer))

4.	 Before objectCategory=computer, but between the new parentheses you added on the
right side, add the new filter criteria: (name=MyNewComputer). Make sure you use the
name of a computer that will be present in Active Directory. This line will now look like
the following:

((objectCategory=computer)(name=MyNewComputer))

5.	 To glue the two search attributes together, add an ampersand (&) character between the
set of parentheses on the left side of the filter. It will look like the following:

(&(objectCategory=computer)(name=MyNewComputer))

6.	 Add the location attribute to the list of properties you are selecting. This is seen below:

";name,location,distinguishedname;subtree"

7.	 Compare your complete search filter with the code below.

strQuery = "<LDAP://dc=nwtraders,dc=msft>;" & _

"(&(objectCategory=computer)(name=MyNewComputer))"&_

";name,location,distinguishedname;subtree"

8.	 Save and run your script. It should retrieve only the computer you specified in the
name= portion of your search filter.

9.	 Modify the Output section of the script to print out the name of the computer for which
you searched. This will be the first line in your Output section. Underline the name of
the computer by using the ForMatTxt function.

WScript.Echo ForMatTxt("Computer named: " & objRecordSet("name"))

10.	 Copy the ForMatTxt function from the ForMatTxt.vbs script in the Chapter 13 folder.
Place it at the bottom of your script. This function is seen below:

Function ForMatTxt(lineOfText)

Dim numEQs

Dim separator

Dim i

numEQs = Len(lineOfText)

Chapter 13 Using ADO to Perform Searches 303
For i = 1 To numEQs

separator = separator & "="

Next

ForMatTxt = lineOfText & vbcrlf &separator & vbcrlf

End Function

11.	 Remove the additional WScript.Echo statements in the Output section and add appropri­
ate labels to each field when it is printed out. Use line continuation and concatenation as
required. When done, the Output section will look similar to the one below.

WScript.Echo ForMatTxt("Computer named: " & objRecordSet("name")) &_

objRecordSet.Fields("name") & " is located: " & objRecordSet.Fields("location") &_

vbcrlf & "Distinguished name: " & objRecordSet.fields("distinguishedname")

12.	 Save and run your script. If it does not produce the expected output, compare it with
\My Documents\Microsoft Press\VBScriptSBS\ch13\FilterComputersByName.vbs.

What Is Global Catalog?
As you become more proficient in writing your scripts, and as you begin to work with the
enterprise on a global scale, you will begin to wonder why some queries seem to take forever
and others run rather quickly. After configuring some of the parameters you looked at earlier,
you might begin to wonder whether you’re querying a Global Catalog server. A Global Catalog
server is a server that contains all the objects and their associated attributes from your local
domain. If all you have is a single domain, it doesn’t matter whether you’re connecting to a
domain controller or a Global Catalog server, because the information would be the same. If,
however, you are in a multiple domain forest, you might very well be interested in which Glo­
bal Catalog server you are hitting. Depending on your network topology, you could be execut­
ing a query that is going across a slow wide area network (WAN) link. You can control
replication of attributes by selecting the Global Catalog check box. You can find this option by
opening the Active Directory Schema MMC, highlighting the Attributes container, and then
double-clicking the attribute you want to modify. You will then be presented with the form
shown in Figure 13-1.

304 Part III Advanced Windows Administration
Figure 13-1 By indicating inclusion in the Global Catalog server, the industrious network adminis­
trator can improve query performance

In addition to controlling the replication of attributes, the administrator might also investigate
attribute indexing. (See Figure 13-2.) Active Directory already has indexes built on certain
objects.

Warning The Active Directory Schema MMC tool is not available by default. You must first
register the schmmgmt.dll tool using Regsvr32. Changes made to the Active Directory Schema
can only be made by members of the Schema Admins group in Active Directory. If you are a
member of that group, then the Active Directory Schema MMC tool is much more dangerous
than Regedit, because it will permit changes to the schema. Modifying the Active Directory
Schema should only be undertaken when one is fully cognizant of the implications from both
a performance and a security standpoint.

However, if an attribute is heavily searched on, you might consider an additional index. You
should do this, however, with caution, because an improperly placed index is worse than no
index at all. The reason for this is the time spent building and maintaining an index. Both of
these operations use processor time and disk input/output (I/O).

Chapter 13 Using ADO to Perform Searches 305
Figure 13-2 Indexing improves query performance in situations where the indexed attribute is part
of the selection criteria

Suppose you create a custom attribute called badgeNumber in Active Directory. This attribute
would be a small number with a high degree of cardinality. Cardinality is a database term that
refers to the level of uniqueness of the data. High cardinality implies greater uniqueness. For
example, in most cases, the givenName field in Active Directory will have a low level of cardi­
nality because several users are likely to have the popular first names of Bob, Alice, Sally, Ter­
esa, and Ed. On the other hand, only one user in Active Directory is associated with a
particular employee number and therefore the employeeNumber field has a high level of cardi­
nality. EmployeeNumber, then, would be a good candidate for indexing.

However, just because a field is a good candidate for indexing doesn’t mean it should be
indexed. It simply means it could be indexed. Before you decide to select the check box for the
badgeNumber attribute, for example, decide how often you’ll search on users by badge num­
ber. To help you figure this out, you could audit LDAP queries that are performed against
Active Directory.

Querying a Global Catalog server

1.	 Launch Notepad or your favorite script editor and open \My Documents\Microsoft

Press\VBScriptSBS\Utilities\BasicQueryTemplate.vbs. Save it as YourNameQue­

ryGC.vbs.

306 Part III Advanced Windows Administration
2.	 At the bottom of the template, find the section of the funfix function that builds the con­
nection string into Active Directory. It will look like the following:

If strOU <> vbempty Then

funfix = "<LDAP://" & strOU & "," & funfix & ">"

else

funfix = "<LDAP://" & funfix & ">"

End if

3. Change LDAP to GC in both places in the function. The modified code is seen below:

If strOU <> vbempty Then

funfix = "<GC://" & strOU & "," & funfix & ">"

else

funfix = "<GC://" & funfix & ">"

End if

4.	 Save and run the script. If the script does not run properly, compare you script with \My
Documents\Microsoft Press\VBScriptSBS\ch13\QueryGC.vbs. Remember, you will
want to run this script under Cscript and make sure it points to the appropriate domain
on your network.

Querying a specific server

1.	 Open the ADOSearchTemplate.vbs in the Utilities folder and save the file as Your-

NameSpecificSearchServer.vbs.

2.	 Identify the LDAP connection line, seen below:

strQuery = "<LDAP://ou=mred,dc=nwtraders,dc=msft>;" _

3.	 After LDAP:// add the name of your server. Make sure it is before the ou= statement, and
that it is followed by a trailing /. This is seen below:

strQuery = "<LDAP://London/ou=mred,dc=nwtraders,dc=msft>;" _

4.	 Compare your completed strQuery code with the one listed below:

strQuery = "<LDAP://London/ou=mred,dc=nwtraders,dc=msft>;" _

& "(objectCategory=user);" _

& "name;" _

& "subtree"

5.	 Save and run your script. If it does not produce the expected results, compare your
script with the \My Documents\Microsoft Press\VBScriptSBS\ch13\SpecificSearch-
Server.vbs script.

Chapter 13 Using ADO to Perform Searches 307
Quick Check

Q. Why would a local Global Catalog server not be used in responding to a query?

A. One reason could be that the Global Catalog server does not contain the attribute for
which you were searching. If it does not contain the attribute, it must refer the query to
another server.

Q. What are the main questions a network administrator must answer prior to indexing
an attribute in Active Directory?

A. A network administrator should look at the size of the data field, the level of cardinality,
and the amount of use the attribute will generate as a search criterion.

Using ADO to query a Microsoft Office Excel spreadsheet

1.	 Launch Notepad or your favorite script editor and open the \My Documents\Microsoft
Press\VBScriptSBS\Utilities\ADOSearchTemplate.vbs script. Save it as YourNameQue­
ryExcelUsingADO.vbs.

2.	 In the Header section of the script, declare four new variables. These variables will hold
the provider name, the data source statement, the extended attributes for Excel, and the
name of the file. They are listed below:

Dim strProvider

Dim strDataSource

Dim strExtend

Dim strFileName

3.	 Specify the Jet provider to use to open Excel. It is the Microsoft.Jet.OLEDB.4.0, and you
will assign it to the strProvider variable, as seen below:

strProvider = "Provider=Microsoft.Jet.OLEDB.4.0"

4.	 Tell the provider to use the extended properties for Microsoft Office Excel 8.0 (this is
true even if you are using Microsoft Office Excel 2003) and assign the extended proper­
ties string to the strExtend variable.

strExtend = "Extended Properties=Excel 8.0"

5.	 Assign the spreadsheet name (in this case, wmiProvidersXP.xls in the Chapter 13 folder)
to the strFileName variable. Use the funfix function to pad the file name with double quo­
tation marks, as seen below:

strFileName = funfix("WMIprovidersXP.xls")

6.	 Assign the file name string contained in the strFileName variable to the strDataSource
variable, as seen below:

strDataSource = "Data Source =" & strFileName

308 Part III Advanced Windows Administration
7.	 Modify the current line to assign the query to the strQuery variable. Use a Select state­
ment to do this. The sheet name must be surrounded with square brackets, and the
name of the sheet is appended with a dollar sign, as seen below:

strQuery = "Select * from [CIMV2$]"

8.	 In the Worker section of the script, modify the objConnection.Open statement so that it is
using the provider specified in the strProvider variable, the data source from strData-
Source, and the extended attributes contained in strExtended. Each of these will be con­
catenated with the other, and separated by semicolons, as seen below:

objConnection.Open strProvider & ";" & strDataSource &";" & strExtend

9.	 Modify the Output section of the script by editing the field name to reflect the column
of interest (class name) from the spreadsheet. This is seen below:

WScript.Echo objRecordSet.Fields("Class Name")

10.	 Create the funfix function at the bottom of the script. This function will simply accept an
input parameter called strIN and append single quotation marks to the front and back of
the value. This is seen below:

Function funfix (strIN)

funfix = "'" & strIN & "'"

End Function

11.	 Save and run the script. If it does not produce a list of WMI classes, compare the script
to \My Documents\Microsoft Press\VBScriptSBS\ch13\QueryExcelUsingADO.vbs.

Using ADO to query a Microsoft Office Access database

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch13\QueryExcelUsingADO.vbs
in Notepad or your favorite script editor. Save the file as YourNameQueryAccessUsing
ADO.vbs.

2.	 Delete the line that declares the strExtend variable that was used to hold the extended
properties required for querying Excel. The line to delete is seen below.

Dim strExtend

3.	 Delete the line that assigns the extended properties for Excel to the strExtend variable.
This line is seen below.

strExtend = "Extended Properties=Excel 8.0"

4.	 Type in the name of the Access database you want to query. In this case, you will use the
EmployeesTest.mdb file included in the Chapter 13 folder. Assign the file name to the
strFileName variable, but feed it into the funfix function that is already present on the
line. This function will append and prepend the single quotation marks required by the
Datasource property.

Chapter 13 Using ADO to Perform Searches 309
strFileName = funfix("EmployeesTest.mdb")

5.	 Modify the query contained in the strQuery variable so that you select everything from
the Employees table. The code to do this is seen below:

strQuery = "Select * from Employees"

6.	 Modify the objConnection.Open line, as seen below:

objConnection.Open strProvider & ";" & strDataSource

7.	 Modify the WScript.Echo command in the Output section of the script so it will print out
both the first name and the city of each employee in the database. Combine the two
fields on a single line using a single echo command. This line will look like the following:

WScript.Echo objRecordSet.Fields("firstName"), objRecordSet.Fields("city")

8.	 Save and run the script. You should see an output similar to that listed below. If it does
not appear, then compare your script with the \My Documents\Microsoft
Press\VBScriptSBS\ch13\QueryAccessUsingADO.vbs script.

sam memphis

sally atlanta

sarah hollywood

jose charlotte

9.	 Modify the output command to remove the .Fields property. You do this by simply delet­
ing the .Fields portion of the output. Naming this property in a record set is optional
because it is the default property. This modification is seen below:

WScript.Echo objRecordSet("firstName"), objRecordSet("city")

10.	 Save and run the script. The output should be the same as the output from the previous
time you ran the script. If it is not, then compare it with the \My Documents\Microsoft
Press\VBScriptSBS\ch13\QueryAccessUsingADO.vbs script.

Using ADO to query a text file

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch13\QueryExcelUsing
ADO.vbs script in Notepad or your favorite script editor and save it as YourNameQuery-
TextFileUsingADO.vbs.

2.	 Declare a new variable called strPath that will contain the path to the text file to query.

Dim strPath

3.	 Modify the value of strExtended to provide the extended properties needed to query a
text file. These attributes tell ADO that datasource is a text file, and we are specifying a
header to the file that is delimited. This line of code is seen below:

strExtend = "Extended Properties=""text;HDR=YES;FMT=Delimited"""

310 Part III Advanced Windows Administration
4.	 After the strExtend line, add a line to hold the value of strPath. This is the folder that con­
tains the text file to query. In this case, it is c:\fso, as seen below:

strPath = "c:\fso\"

5.	 Delete the funfix function from the bottom of the script. Also delete the reference to fun-
fix from the strFileName variable in the Reference section of the script. The new file to
query is called MyText.csv. This is the new value of strFileName, as seen below:

strFileName = "myText.csv"

6.	 The strDataSource variable will hold the path to the file, not the file name itself. Edit the
assignment to strDataSource so it contains the strPath variable, as seen below:

strDataSource = "Data Source =" & strPath

7.	 To query a text file using ADO, we only need to use Select * from the name of the text file.
Because the text file is contained in the strFileName variable, the query references strFile-
Name instead of the square bracketed name of the Excel spreadsheet that was present in
the original script. Edit the strQuery line to reflect this convention.

strQuery = "Select * from " & strFileName

8.	 Modify the Output section of the script. We are interested in printing out the name,
address, and phone number of each employee. One of three methods for referring to
these fields can be used: specify the field name as the item, specify the field directly, or
refer directly to objRecordSet. This is illustrated in the code below. (Never do this in real
life—choose one method for retrieving field names and use it consistently.) Use vbTab to
space over the address and phone number lines for ease of reading.

WScript.Echo "Name: " & objRecordset.fields.item("Name")

WScript.Echo vbTab & "Address: " & objRecordset.fields("Address")

WScript.Echo vbTab & "PhoneNumber: " & objRecordset("PhoneNumber")

9.	 Save and run the script. You should see an output similar to the following:

Name: ed

Address: charlotte

PhoneNumber: 12345

Name: bob

Address: atlanta

PhoneNumber: 456787

Name: sally

Address: Chicago

PhoneNumber: 678345

Name: paul

Address: cincinnati

PhoneNumber: 245987

Chapter 13 Using ADO to Perform Searches 311
10. If your script does not produce the expected results, compare your code with \My Doc­
uments\Microsoft Press\VBScriptSBS\ch13\QueryTextFileUsingADO.vbs.

Creating an ADO Query into Active Directory
Step-by-Step Exercises

In this section, you will practice creating an ADO query to Active Directory to pull out infor­
mation about computer objects.

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\BlankTemplate.vbs in
Notepad or your favorite script editor and save your new script as YourNameStepBy
StepADOquery.vbs.

2.	 Type Option Explicit on the first line to force the declaration of all variables.

3.	 Type On Error Resume Next.

4.	 Declare the following variables by using the Dim command: qQuery, objConnection, obj-
Command, and objRecordSet.

5.	 Create a query using the LDAP namespace that connects to your local domain control­
ler. Specify that objectCatagory is equal to computer. Choose the following fields: distin­
guishedName, name, and logonCount. Set the search dimension to subtree. Assign this
query to a variable called qQuery. Your code will look similar to the following (make sure
you specify the actual name of your domain):

qQuery = "<LDAP://dc=nwtraders,dc=msft" & _

"(objectCategory=computer)" & _

";distinguishedName,name" & _

",operatingSystem" & _

",logonCount" & _

";subtree"

6.	 Create a variable called objConnection and use it to hold an instance of the ADODB con­
nectionObject. Your code will look like the following:

Set objConnection = CreateObject("ADODB.Connection")

7.	 Create an ADODB command object and assign it to a variable called objCommand. Your
code will look like the following:

Set objCommand = CreateObject("ADODB.Command")

8.	 Open the connection using connectionObject and specify the ADsDSOObject provider.
Your code will look like the following:

objConnection.Open "Provider=ADsDSOObject;"

9.	 Use the ActiveConnection method of the objCommand object to specify the connection
held by objConnection as the active connection to Active Directory. Your code will look
like the following:

objCommand.ActiveConnection = objConnection

312 Part III Advanced Windows Administration
10.	 Use the commandText method to set the query contained in the variable qQuery to be the
command text for the command object. Your code will look like the following:

objCommand.CommandText = qQuery

11.	 Assign the record set returned by the Execute method of commandObject to the variable
objRecordSet. Your code will look like the following:

Set objRecordSet = objCommand.Execute

12.	 Use a While Not Wend construction to iterate through the record set and echo out the fol­
lowing fields: Name, distinguishedName, operatingSystem, and logonCount.

13.	 Once you echo out these fields, use the moveNext method of the objectRecordSet object to
advance to the next record. Your code will look like the following:

While Not objRecordSet.EOF

WScript.Echo objRecordSet.Fields("name")

WScript.Echo objRecordSet.Fields("distinguishedName")

WScript.Echo objRecordSet.Fields("operatingSystem")

WScript.Echo objRecordSet.Fields("logonCount")

objRecordSet.MoveNext

Wend

14.	 Close the connection. Your code will look like the following:

objConnection.Close

15.	 Save and run the script by using CScript. If there are problems with your script, then
compare it to \My Documents\Microsoft Press\VBScriptSBS\ch13\StepByStep\Step-
ByStepADOQuery.vbs.

One Step Further: Controlling Script Execution While
Querying Active Directory

In this section, you will modify the \My Documents\MicrosoftPress\VBScriptSBS\ch13
\OneStepFurther\FilterMoreComputers.vbs script to control the way it executes while query­
ing Active Directory.

1.	 Open the FilterMoreComputers.vbs script in Notepad or your favorite script editor and
save the script as YourNameOSFcontrolScriptQuery.vbs.

2.	 On the line following the objCommand.CommandText = qQuery statement, add an obj-
Command property statement that will change the default asynchronous behavior from
false to true. The amended script will look like the following:

Option Explicit

'On Error Resume Next

Dim qQuery

Dim objConnection

Dim objCommand

Chapter 13 Using ADO to Perform Searches 313
Dim objRecordSet

qQuery = "<LDAP://dc=nwtraders,dc=msft>;" & _

 "(objectCategory=computer)" & _

 ";distinguishedName,name;subtree"

Set objConnection = CreateObject("ADODB.Connection")

Set objCommand = CreateObject("ADODB.Command")

objConnection.Open "Provider=ADsDSOObject;"

objCommand.ActiveConnection = objConnection

objCommand.CommandText = qQuery

objCommand.properties("Asynchronous")=True

Set objRecordSet = objCommand.Execute

While Not objRecordSet.EOF

 WScript.Echo objRecordSet.Fields("name")

 WScript.Echo objRecordSet.Fields("distinguishedName")

 objRecordSet.MoveNext

Wend

objConnection.Close

3.	 Save the script.

4.	 Open a command prompt and run the script in CScript. You should see output coming
from the script, but you will probably NOT notice any difference.

5.	 Turn off the caching of results by setting Cache Results to false. Do this under the

objCommand.properties("Asynchronous") = True line you added in step 2. Your code for

this command will look like the following:

objCommand.properties(“cache results”) = False

6.	 Save and run the script. Again you probably will not see any difference in the output.

7.	 Set a page size of 1 to tell Active Directory to return one object at a time. This line can go
below the cache results setting specified in line 6. Your code will look like the following:

objCommand.properties("Page Size") = 1

8.	 Save and run the script.

9.	 Change the page size to 10 and set a size limit of 100 to limit the number of objects

returned. The two lines of code will look like the following:

objCommand.properties("Page Size") = 10

objCommand.properties("Size limit") = 100

10.	 Set a query time limit that will limit how long the server is allowed to search for results.
You will use the Time Limit property, as shown in the following code. Place this code
below the size limit line.

objCommand.Properties("Time Limit") = 2

11.	 Save and run the script.

314 Part III Advanced Windows Administration
12.	 Set a timeout value that will limit how long the client machine waits for results from the
server. This value should be smaller than the time limit value.

objCommand.Properties("Timeout") = 1

13.	 Save and run the script.

14.	 Close your work.

Chapter 13 Quick Reference

To Do This

Make an ADO connection into Active Directory Use the ADsDSOObject provider with ADO to
talk to Active Directory

Modify an Active Directory query Modify the search filter portion of the LDAP
syntax query

Tell ADO search to cache results on the client Use the Cache results property
side of the connection

Directly query a Global Catalog server Use GC:// in your connection moniker, instead of
using LDAP://

Directly query a specific server in Active Use LDAP:// followed by the specific server
Directory name in your connection moniker, followed by a

trailing /

Use ADO to query an Access database Use the Microsoft.Jet.OLEDB.4.0 provider and
specify the name of the database as the data
source

Use ADO to query an Excel spreadsheet Use the Microsoft.Jet.OLEDB.4.0 provider,
specify Excel 8.0 as extended properties, and
reference the spreadsheet by sheet name in
square brackets with a trailing $

Query multiple attributes in an LDAP syntax Use a set of parentheses to surround each of
query the attributes, and place an ampersand at the

beginning inside parenthesis to glue the two sets
of attributes together

Chapter 14

Configuring Networking

Components

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from earlier chapters:

■ Creating text files

■ Writing to text files

■ Making a connection to WMI

■ Making a connection to Microsoft Active Directory directory service

■ Implementing the For…Next statement

■ Implementing the Select Case statement

After completing this chapter, you will be able to:

■ Use WMI to configure networking components

■ Convert a text file from Active Directory into input for script

■ Work with input text files

WMI and the Network
In this section, you use Windows Management Instrumentation (WMI) to configure network­
ing components. However, instead of just dashing off a quick WMI script, you will take a step
forward and begin combining several of the techniques presented earlier in this book, such as
writing to text files and reading from Active Directory. This little bit of magic will track every
step of your networked operations, enabling you to avoid dire consequences should an oper­
ation fail to properly complete. You can use this technique to:

■ Import a list of computers from an organizational unit (OU) in Active Directory

■ Import a list of users from an OU in Active Directory

■ Import a list of users from a group that resides in Active Directory

■ Read Active Directory and make changes on workstations
315

316 Part III Advanced Windows Administration
■ Use a Lightweight Directory Access Protocol (LDAP) provider

■ Make an ActiveX Data Objects (ADO) connection

■ Execute an ADO command

■ Use While Not…Wend to iterate through the record set

■ Use WMI to make changes on desktop machines

Making the Connection

When creating a script with multiple parts or multiple actions, taking a systematic approach
vastly simplifies the process. The script you will examine in this chapter has five major com­
ponents. You will test each portion of the script after you write it to ensure it is working prop­
erly. Next, you will need to test the query syntax to ensure it is returning only the machines
you want to modify. Once you have the query working properly, you will want to test the WMI
portion of the script to ensure it works as planned. Finally, you will put the entire script
together.

The following script is called ConnectToADOU.vbs, and it connects to Active Directory using
the LDAP provider, makes an ADO connection, and executes an ADO command. Finally, it
uses While Not…Wend to iterate through the returned record set. It does not use WMI at this
point.

Note To run the ConnectToADOU.vbs script, you need to have access to an Active Directory
controller. You also need to ensure that you modify the oDom and the oOU variables to accu­
rately reflect your environment.

ConnectToADOU.vbs
Option Explicit

'On Error Resume Next

Dim qQuery

Dim oConnection

Dim oCommand

Dim oRecordSet

Dim oDom

Dim oProvider

Dim oOU

oProvider = "'LDAP://"

oDom = "dc=nwtraders, dc=msft'"

oOU = "ou=mred,"

qQuery = "Select Name from " & oProvider _

& oOU & oDom & "where objectClass='computer'"

Set oConnection = CreateObject("ADODB.Connection")

Set oCommand = CreateObject("ADODB.Command")

Chapter 14 Configuring Networking Components 317
oConnection.Open "Provider=ADsDSOObject;"

oCommand.ActiveConnection = oConnection

oCommand.CommandText = qQuery

Set oRecordSet = oCommand.Execute

While Not oRecordSet.EOF

Wscript.Echo oRecordSet.Fields("name")

oRecordSet.MoveNext

Wend

oConnection.Close

Header Information

The Header information section of the script continues to be rather uninteresting. However,
you shouldn’t ignore it just because it is boring. Remember, when we use Option Explicit, we
must declare all our variables. Because all the variables get listed out, Option Explicit provides
a good place to document their use. By documenting the use of every variable, you perform
two functions: provide a reference for future modifications and provide a reference for others
who might read the script at a point later in time. I will admit that in the past, I did not docu­
ment some scripts because at the time I understood what the script was doing. However, later,
when I had to modify the script, I had to conduct a lot of additional research to figure out what
I had done. The time to add documentation to a script is when you write it, not months later.
Additionally, it makes sense to document the changes you make when you modify the script.
This can take the form of comments with an associated date, and you can easily incorporate
these comments into a script template, as shown in the following code section:

'==

'

' VBScript: AUTHOR: Ed Wilson , MS, 11/09/2003

'

' NAME: <ConnectToADOU.vbs>

'

' COMMENT: Key concepts are listed below:

'1. making connection to AD

'2. Controlling results by using a filter

' REVISIONS:

' 11/10/2003 connection string - split into parts

' 11/11/2003 added computer filter to query

' 11/12/2003 changed names of vars from obj to o

'==

The standard header information is placed just below the template section, as shown here:

Option Explicit

On Error Resume Next

Dim qQuery

Dim oConnection

Dim oCommand

Dim oRecordSet

318 Part III Advanced Windows Administration
Dim oDom

Dim oProvider

Dim oOU

Reference Information

The Reference information section of the script is used to assign specific values to variables
used in the script. One advantage of breaking the connection string into multiple parts is that
the connection is easier to read and understand, and it also provides additional flexibility
because of the ease of supplying different variables. The one issue to keep in mind when
breaking up connection strings is that when the variables are concatenated back together,
these variables must supply exactly what Microsoft Visual Basic, Scripting Edition (VBScript)
is expecting.

Tip I often find myself having to use the WScript.Echo command to list out my connection
string or my query after it has been put back together. More often than not, I find I’ve left out
a semicolon, comma, or quotation mark that VBScript was expecting. This is where echoing out
the query is invaluable. It takes one second to echo something out, whereas it could take hours
of staring, visualizing, and imagining what the query or connection string looks like when put
back together.

The variable oProvider is assigned to the string 'LDAP://' and is used to tell VBScript you will
be talking via LDAP to Active Directory. You use oDom to hold the domain components of the
connection string. Using normal LDAP language, each part of the domain name is specified:
Dc=nwtraders, dc=msft. In this example, you don’t use a .com, .net, or .org upper-level domain
name; you use the .msft imaginary name. The next variable you define is oOU, which you set
equal to the workstations’ OU. After assigning values to the provider, domain, and OU vari­
ables, you’re ready to create the query. You use the qQuery variable to hold your constructed
query. Notice that the syntax looks similar to a Structured Query Language (SQL) query. You
are selecting the name field from 'LDAP://ou=mred, dc=nwtraders, dc=msft', but you want only
the name field if the object class is a computer. So you specify that in the Where clause of the
query.

oProvider = "'LDAP://"

oDom = "dc=nwtraders, dc=msft'"

oOU = "ou=mred,"

qQuery = "Select Name from " & oProvider _

& oOU & oDom & "where objectClass='computer'"

Worker and Output Information

The next six lines of the script make an ADO connection to Active Directory. You use oConnec­
tion to hold the ADODB connection object that comes back from using the CreateObject com­
mand to give you an ADODB connection. Next, you use oCommand to hold the command

Chapter 14 Configuring Networking Components 319
object that comes back from using the CreateObject command to give us an ADODB command
object. If the previous sentence seems redundant, that’s because it is. This is one of the fea­
tures of ADO, in fact! To reduce the learning curve, the developers tried very hard to make the
syntax similar. Once you have the connection object and the command object, you can move
forward with making the connection into Active Directory. You can think of building the ADO
connection into Active Directory as connecting pipes. The provider is the kind of pipe you are
going to run, the connection object is the path you are going to take while running the pipes,
and the command is the valve that controls the flow of data through the pipes. Just as pipes
are run one stick at a time, so too is each piece necessary to connect to Active Directory placed
one at a time.

Now it’s time to open the valve, but just like a water valve in your house, you need to know
which valve to open and how far to turn the valve. With ADO, you specify the provider (that
is, which pipe), which in this case is ADsDSOObject, and you specify which connection is the
active connection. Next, you specify the command text, which is your qQuery (indicates how
far you will open the valve). Once everything is lined up, you execute (open the valve). But
wait! At home, you need a glass or a bucket to hold the water. With ADO, you need something
to hold your data flow—in this script, you use the variable called oRecordSet to hold the data
that comes back.

Iterate through the record set that comes back from the qQuery. To do this, you use a While
Not…Wend statement. Because you don’t know in advance how many computers are in the
workstation OU, you return a set of records from Active Directory and work through each
record in the set until you reach the end of the file, which is designated as oRecordSet.EOF. As
long as the record set has records you haven’t touched, you echo out the name of the record
and then move to the next record in the set. If you come to the end of the record set, you end
the While Not…Wend statement. You are using the Echo command right now as a test mecha­
nism. In the script, right now, the Echo command is the Output section of the script. After you
make sure the script works as planned, you replace the Echo command with some WMI code
to change the Transmission Control Protocol/Internet Protocol (TCP/IP) address from static
to dynamic.

Set oConnection = CreateObject("ADODB.Connection")

Set oCommand = CreateObject("ADODB.Command")

oConnection.Open "Provider=ADsDSOObject;"

oCommand.ActiveConnection = oConnection

oCommand.CommandText = qQuery

Set oRecordSet = oCommand.Execute

While Not oRecordSet.EOF

WScript.Echo oRecordSet.Fields("name")

oRecordSet.MoveNext

Wend

oConnection.Close

320 Part III Advanced Windows Administration
Quick Check

Q. What is an advantage of using WScript.Echo to display the text of a query?

A. An advantage of using WScript.Echo to display the text of a query is that it makes trouble­
shooting a concatenated query string easy.

Q. Why do you need to use While Not in the Worker information section of the script?

A. While Not is used to iterate through the record set. It gives you the ability to work with an
unknown number of computers.

Changing the TCP/IP Settings
After your script can connect to Active Directory and return a record set of computer names,
you’re ready to use WMI to convert the machines from static Internet Protocol (IP) addresses
to Dynamic Host Configuration Protocol (DHCP)–assigned addresses. You scrounge around
and come up with a script that uses WMI to turn on DHCP.

Caution Please note this script will turn on DHCP on a computer. If you were to run it on a
production server, it would turn on DHCP, and the server would request an IP address from
your DHCP server. This could result in workstations not being able to communicate with your
server. These scripts should be only used in a test environment until you configure them for
your production environment.

The script to use to turn on DHCP, called EnableDHCP.vbs, is shown here:

EnableDHCP.vbs
Target = "."

Set oWMIService = GetObject("winmgmts:\\" & Target & "\root\cimv2")

Set colNetAdapters = oWMIService.ExecQuery _

("Select * from Win32_NetworkAdapterConfiguration where IPEnabled=TRUE")

For Each oNetAdapter In colNetAdapters

errEnable = oNetAdapter.EnableDHCP()

If errEnable = 0 Then

WScript.Echo "DHCP has been enabled."

Else

WScript.Echo "DHCP could not be enabled."

End If

Next

Just the Steps To enable DHCP by using WMI

1. Make a connection to WinMgmts on the target machine.

2. Connect to the root\cimv2 namespace in WMI.

3. Create a collection to hold the result of the query.

4. Use a query to choose network adapters that have TCP/IP bound and enabled.

Chapter 14 Configuring Networking Components 321
5. Use a For Each…Next loop to iterate through the collection of network adapter
configurations.

6. Use the EnableDHCP command on each network adapter configuration.

Header Information

The Header information section in this script is similar to the ConnectToADOU.vbs script. The
variables are Target, oWMIService, colNetAdapters, oNetAdapter, and errEnable. When you merge
the WMI script with Active Directory Service Interfaces (ADSI) script such as the ones examined
in Chapters 11 and 12, you will need to declare new variables such as the ones mentioned here.

Reference Information

In the Reference information section, you assign values to the variables used in the script. The
variable oWMIService is assigned to the hook that comes back from WMI when you use the
CreateObject command. You attach to the root\cimV2 namespace on the target machine. You
use colNetAdapters to hold the hook that comes back from running a query against the WMI
namespace. The query you run is designed to return all the network adapter configurations
installed on the target computer that are IP-enabled. You do this because there is no point in
trying to turn on DHCP on an Internetwork Packet Exchange/Sequenced Packet Exchange
(IPX/SPX) or AppleTalk network adapter configuration.

Worker and Output Information

In the Worker information section of the script, you use the oNetAadapter variable as a place­
holder by using the For Each…Loop to help you iterate through the collection of network
adapter configurations. One nice thing you do here is use a variable called errEnable. You set
errEnable to be equal to the value that is returned by VBScript when you try to turn on DHCP
by using the enableDHCP command. If the operation is successful, the return code is 0. How­
ever, if the operation fails, you get a different return code. In this script, you’re interested only
in whether DHCP works. So if the return code is 0, everything is fine, and you echo out that
DHCP was enabled. If DHCP enablement fails, you get a different error code as just men­
tioned, and so you use the Else part of the script and simply echo that DHCP failed.

Quick Check

Q. To programmatically turn on DHCP, to which WMI namespace do you connect?

A. You need to connect to root\cimV2.

Q. In what fashion does WMI return the network adapter?

A. WMI returns the network adapter as a collection.

Q. What return code indicates a successful WMI operation?

A. A return code of 0 indicates a successful WMI operation.

322 Part III Advanced Windows Administration
Merging WMI and ADSI
Now that you know that both the ADSI script and the WMI script work as advertised, merging
the two scripts is a rather easy task. By merging them, you will connect to Active Directory,
perform a query of all computers in the mred OU, take the returned data into a record set, iter­
ate through the record set, and enable DHCP on each workstation in the record set until you
reach the end of the file. Along the way, echo out the results of the DHCP operation. The new
script is called ADouWMIDHCP.vbs.

You need to assign a computer name to the variable Target. You do this inside the While
Not…Wend loop by using Target = oRecordSet.Fields("name"), because as you walk through the
record set, Target holds the name you get back. The variable Target will contain each computer
name retrieved from ADSI during the execution of the script. Each name will then be used as
a target of a WMI query. The rest of the WMI script is placed inside the While Not…Wend loop
without additional alteration. Combining the two scripts enables you to leverage two different
technologies to simplify a seemingly daunting desktop management problem. The only
required changes to the ADSI script involved declaring the variables used by WMI in the
Worker information section of the script. To make it obvious which variables were added with
the merger, I added all new variables to two lines in the Header information section of the
script. Although the only requirement for doing this is to place a comma between the variable
names, I do not normally use this technique unless I have many variables that need to be
declared.

ADouWMIDHCP.vbs
Option Explicit

'On Error Resume Next

Dim qQuery

Dim oConnection

Dim oCommand

Dim oRecordSet

Dim oDom

Dim oProvider

Dim oOU

Dim Target, oWMIService, colNetAdapters, oNetAdapter, errEnable

oProvider = "'LDAP://"

oDom = "dc=nwtraders, dc=msft'"

oOU = "ou=mred,"

qQuery = "Select Name from " & oProvider _

& oOU & oDom & "where objectClass='computer'"

Set oConnection = CreateObject("ADODB.Connection")

Set oCommand = CreateObject("ADODB.Command")

oConnection.Open "Provider=ADsDSOObject;"

oCommand.ActiveConnection = oConnection

oCommand.CommandText = qQuery

Set oRecordSet = oCommand.Execute

Chapter 14 Configuring Networking Components 323
While Not oRecordSet.EOF

Target= oRecordSet.Fields("name")

Set oWMIService = GetObject("winmgmts:\\" & Target & "\root\cimv2")

Set colNetAdapters = oWMIService.ExecQuery _

("Select * from Win32_NetworkAdapterConfiguration where IPEnabled=TRUE")

For Each oNetAdapter In colNetAdapters

errEnable = oNetAdapter.EnableDHCP()

If errEnable = 0 Then

Wscript.Echo "DHCP has been enabled."

Else

Wscript.Echo "DHCP could not be enabled."

End If

Next

oRecordSet.MoveNext

Wend

oConnection.Close

Quick Check

Q. What is one technique for reducing the amount of space in a script that must declare
a large number of variables?

A. You can reduce the space that variables take up in a script by declaring multiple variables
on the same line.

Q. In the ADouWMIDHCP.vbs script just discussed, why was the WMI section of the script
placed inside the While Not…Wend section?

A. The WMI section of the script was placed inside the While Not…Wend section so it could
gain access to the name field in the record set. The name then became the target of the
WMI portion of the script.

Win32_NetworkAdapterConfiguration
The Win32_NetworkAdapterConfiguration WMI class has many properties and methods. The
properties are elements containing information about the specific network adapter configura­
tion, and the methods are used to perform a specific action on the network adapter configu­
ration, such as enabling DHCP. Indeed, with 41 methods defined in Microsoft Windows
Server 2003, it is hard to think of an operation that isn’t covered. Some of the more common
methods are listed in Table 14-1. You can find complete documentation by searching on
Win32_NetworkAdapterConfiguration in the Platform Software Development Kit (SDK).

Table 14-1 Win32_NetworkAdapterConfiguration Methods

Method Description

DisableIPSec Disables IP security on this TCP/IP-enabled network adapter

EnableDHCP Enables the DHCP for service with this network adapter

324 Part III Advanced Windows Administration
Table 14-1 Win32_NetworkAdapterConfiguration Methods

Method Description

EnableDNS Enables Domain Name System (DNS) name resolution on this
TCP/IP-bound network adapter

EnableIPFilterSec Enables IP security globally across all IP-bound network
adapter configurations

EnableIPSec Enables IP security on this specific TCP/IP-enabled network
adapter

EnableStatic Enables static TCP/IP addressing for the target network
adapter

EnableWINS Enables Windows Internet Naming Service (WINS) settings
specific to TCP/IP but independent of the network adapter

ReleaseDHCPLease Releases the IP address bound to a specific DHCP-enabled
network adapter

ReleaseDHCPLeaseAll Releases the IP addresses bound to all DHCP-enabled
network adapter configurations

RenewDHCPLease Renews the IP address on specific DHCP-enabled network
adapter configurations

RenewDHCPLeaseAll Renews the IP addresses on all DHCP-enabled network
adapter configurations

SetDatabasePath Sets the path to the standard Internet database files (Hosts,
LMhosts, Networks, and Protocols)

SetDNSDomain Sets the DNS domain

SetDNSServerSearchOrder Sets the server search order as an array of elements

SetDNSSuffixSearchOrder Sets the suffix search order as an array of elements

SetDynamicDNSRegistration Indicates dynamic DNS registration of IP addresses for this
IP-bound adapter

SetGateways Specifies a list of gateways for routing packets destined for
a different subnet than the one to which this adapter is
connected

SetIPConnectionMetric Sets the routing metric associated with this IP-bound adapter

SetKeepAliveInterval Sets the interval separating Keep Alive Retransmissions until
a response is received

SetKeepAliveTime Sets how often TCP attempts to verify that an idle connection
is still available by sending a Keep Alive packet

SetTcpipNetbios Sets the default operation of network basic input/output
system (NetBIOS) over TCP/IP

SetTcpMaxConnectRetransmissions Sets the number of times TCP will retransmit a connect
request before aborting

SetTcpMaxDataRetransmissions Sets the number of times TCP will retransmit an individual
data segment before aborting the connection

SetTcpNumConnections Sets the maximum number of connections that TCP might
have open simultaneously

Chapter 14 Configuring Networking Components 325
Table 14-1 Win32_NetworkAdapterConfiguration Methods

Method Description

SetTcpWindowSize Sets the maximum TCP Receive Window size offered by the
system

SetWINSServer Sets the primary and secondary WINS servers on this
TCP/IP-bound network adapter

Using WMI to Assign Network Settings Step-by-Step
Exercises

Let’s practice using WMI to set various networking configuration properties. The result of this
will become the Worker information section for use in the One Step Further section.

Caution If this script were to be run in a production environment, it would turn on DHCP on
the targeted machines. This could interrupt network communications. Please use this script in
a practice environment first, and make the appropriate changes before ever running it in a pro­
duction environment.

Instructions

1.	 Open Microsoft Notepad or your favorite script editor.

2.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch14\Step-
ByStep\EnableDHCPStarter.vbs script and save it as YourNameEnableDHCP.vbs.

3.	 On the first line, add the Option Explicit command.

4.	 Change the variable strComputer to Target everywhere it is mentioned in the script. (The
Find and Replace feature of Notepad is a good tool to use when renaming variables.)

5.	 Change the variable objWMIService to oWMIService everywhere it is mentioned in the
script.

6.	 Change the variable objNetAdapter to oNetAdapter everywhere it is mentioned in the
script.

7.	 Declare all the variables used in the script by using the Dim command. You will need to
declare seven variables: Target, oWMIService, oNetAdapter, colNetAdapters, DNSDomain-
Err, DNSsearchErr, and DNSserver.

8.	 Modify the line errEnable = oNetAdapter.EnableDHCP() so that you can assign a DNS suf­
fix for NWTraders.com. The line will look like the following:

DNSDomainErr = oNetAdapter.SetDNSDomain("NWTraders.com")

9.	 Delete the Output section (the If…Then…Else section).

http:NWTraders.com

326 Part III Advanced Windows Administration
10.	 Add a couple of DNS servers to the DNS search list. To do this, use the SetDNSsearch
Order method. However, because the DNS server is stored as an array, you will need to
make a couple of entries in the script. On the line below the Target = "." line, add the fol­
lowing code:

DNSserver = Array("128.1.2.1", "129.1.2.2")

11.	 Add the SetDNSsearchOrder method under the SetDNSDomain line. Your code will look
like the following:

DNSsearchErr=objNetAdapter.SetDNSServerSearchOrder(DNSserver)

12.	 Add a couple of lines of code so that you know the result of your operation. To do this,
you echo out the value of both DNSsearchErr and DNSDomainErr along with appropri­
ate remarks. The code for this looks like the following:

WScript.Echo "DNSDomain returned " & (DNSDomainErr)

WScript.Echo "DNSsearchOrder returned " & (DNSsearchErr)

13.	 Save your work as YourNameEnableDHCP.vbs. Run the script. You should see the IP
address on your machine change to use a DHCP assigned address. If there is no DHCP
server, then the machine will obtain an Automatic Private Internet Addressing (APIA)
address. If this is not the case, then compare your script with the EnableDHCP.vbs script
in the \My Documents\Microsoft Press\VBScriptSBS\ch14\StepByStep folder.

One Step Further: Combining WMI and ADSI in a Script
In this section, you combine the WMI script created in the previous exercise with an ADSI
script. You can also use the \My Documents\Microsoft Press\VBScriptSBS\ch14\OneStep-
Further\OSFch14Starter.vbs script.

Caution If this script were to be run in a production environment, it would turn on DHCP on
the targeted machines. This could interrupt network communications. Please use this script in
a practice environment first, and make the appropriate changes before ever running it in a pro­
duction environment.

1.	 Open Notepad or your favorite script editor.

2.	 Open the OSFch14Starter.vbs file.

3.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch14\OneStepFurther\Con­
nectToADOU.vbs file.

4.	 Save the ConnectToADOU.vbs file as YourNameConnectToADOU_DHCP.vbs.

5.	 Copy the seven variable declarations from the OSFch14Starter.vbs file and paste them
into the Header information section of your YourNameConnectToADOU_DHCP.vbs
script. The seven variable declarations look like the following:

Chapter 14 Configuring Networking Components 327
Dim target

Dim oWMIService

Dim colNetAdapters

Dim oNetAdapter

Dim DNSDomainErr

Dim DNSsearchErr

Dim DNSServer

6.	 In your YourNameConnectToADOU_DHCP.vbs file, locate the While Not…Wend section
of the script. Remove the WScript.Echo portion of the WScript.Echo oRecord-
Set.Fields("name") command.

7.	 Replace the WScript.Echo command with Target = so that the new command looks like
the following:

Target = oRecordSet.Fields("name")

8.	 Copy the remaining portion of the OSFch14Starter.vbs script and paste it just below
the new Target = oRecordSet.Fields("name") command. Make sure you do not include the
target="." Section. The new While Not…Wend statement looks like the following:

While Not oRecordSet.EOF

Target = oRecordSet.Fields("name")

DNSserver=Array("128.1.2.1", "129.1.2.2")

Set oWMIService = GetObject("winmgmts:\\" & target & "\root\cimv2")

Set colNetAdapters = oWMIService.ExecQuery _

("Select * from Win32_NetworkAdapterConfiguration where IPEnabled=TRUE")

For Each oNetAdapter In colNetAdapters

DNSDomainErr = oNetAdapter.SetDNSDomain("NWTraders.com")

DNSsearchErr=oNetAdapter.SetDNSServerSearchOrder(DNSserver)

WScript.Echo "DNSDomain returned " & (DNSDomainErr)

WScript.Echo "DNSsearchOrder returned " & (DNSsearchErr)

Next

oRecordSet.MoveNext

Wend

9.	 Save your work.

10.	 Test the script. If it works, remove the comment from the On Error Resume Next
command. If it doesn’t work, compare it with \My Documents\Microsoft
Press\VBScriptSBS\ch14\OneStepFurther\ConnectToADOU_DHCP.vbs.

328 Part III Advanced Windows Administration
Chapter 14 Quick Reference

To Do This

Control the behavior of NetBIOS over TCP/IP Use the WIN32_NetworkAdapterConfiguration
class

Disable NetBIOS over TCP/IP Use the SetTcpIpNetios method of the
WIN32_NetworkAdapterConfiguration class

Specify a unique domain name for a network Use the SetDNSDomain method from the
connection WIN32_NetworkAdapterConfiguration class

Specify a DNS server Use the SetDNSServerSearchOrder method from
the WIN32_NetworkAdapterConfiguration class

Obtain an up-to-date list of computers for Use ADSI to query Active Directory for the
performing WMI configuration operations computers; then call the appropriate WMI

methods to perform the configuration

Chapter 15

Using Subroutines

and Functions

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from earlier chapters:

■ Reading text files

■ Writing to text files

■ Creating files

■ Creating folders

■ Using the For…Next statement

■ Creating the Select Case statement

■ Connecting to Microsoft Active Directory directory service

■ Reading information from WMI

After completing this chapter, you will be able to:

■ Convert inline code into a subroutine

■ Call subroutines

■ Perform Active Directory user management

Working with Subroutines
In this section, you’ll learn about how network administrators use subroutines. For many
readers, the use of subroutines will be somewhat new territory and might even seem unnec­
essary, particularly when you can cut and paste sections of working code. But before we get
into the how-to, let’s go over the what.

A subroutine is a named section of code that gets run only when something in the script calls
it by name. Nearly every script we’ve worked with thus far has been a group of commands,
which have been processed from top to bottom in a consecutive fashion. Although this con­
secutive processing approach, which I call linear scripting, makes the code easy for the net­
329

330 Part III Advanced Windows Administration
work administrator to work with, it does not always make his work very efficient. In addition,
when you need to perform a similar activity from different parts of the script, using the inline
cut-and-paste scripting approach quickly becomes inefficient and hard to understand. This is
where subroutines come into play. A subroutine is not executed when its body is defined in
the code; instead, it is executed only when it is called by name. If you define a subroutine, and
use it only one time, you might make your script easier to read or easier to maintain, but you
will not make the script shorter. If, however, you have something you want to do over and
over, the subroutine does make the script shorter. The following summarizes uses for a sub­
routine in Microsoft Visual Basic, Scripting Edition (VBScript):

■ Prevents needless duplication of code

■ Makes code portable and reusable

■ Makes code easier to troubleshoot and debug

■ Makes code easier to read and maintain

■ Makes code easier to modify

The following script (LinearScript.vbs) illustrates the problem with linear scripting. In this
script are three variables: a, b, and c. Each of these is assigned a value, and you need to deter­
mine equality. The script uses a series of If Then…Else statements to perform the evaluative work.
As you can see, the code gets a little redundant by repeating the same statements several times.

LinearScript.vbs
Option Explicit

Dim a

Dim b

Dim c

a=1

b=2

c=3

If a = b Then

WScript.Echo a & " and " & b & " are equal"

Else

WScript.Echo a & " and " & b & " are not equal"

End If

If b = c Then

WScript.Echo b & " and " & c & " are equal"

Else

WScript.Echo b & " and " & c & " are not equal"

End If

If a + b = c Then

WScript.Echo a+b & " and " & c & " are equal"

Else

WScript.Echo a+b & " and " & c & " are not equal"

End If

Chapter 15 Using Subroutines and Functions 331
OK, so the script might be a little redundant, although if you’re paid to write code by the line,
this is a great script! Unfortunately, most network administrators are not paid by the line for
the scripts they write. This being the case, clearly you need to come up with a better way to
write code. (I am telegraphing the solution to you now…) That’s right! You will use a subrou­
tine to perform the evaluation. The modified script uses a subroutine to perform the evalua­
tion of the two numbers. This results in saving two lines of code for each evaluation
performed. In this example, however, the power is not in saving a few lines of code—it’s in the
fact that you use one section of code to perform the evaluation. Using one section makes the
script easier to read and easier to write.

Note Business rules is a concept that comes up frequently in programming books. The idea
is that many programs have concepts that are not technical requirements but still must be
adhered to. These are nontechnical rules. For instance, a business rule might say that when a
payment is not received within 30 days after the invoice is mailed, a follow-up notice must be
sent out, and a 1 percent surcharge is added to the invoice amount. Because businesses some­
times change these nontechnical requirements, such rules would be better incorporated into a
separate section of the code (a subroutine, for example) as opposed to sprinkling them
throughout the entire program. If the business later decides to charge an additional 1 percent
surcharge after 60 days, this requirement can be easily accommodated in the code.

In the script you are currently examining, your business rules are contained in a single code
section, so you can easily modify the code to incorporate new ways of comparing the three
numbers (to determine, for example, that they are not equal instead of equal). If conditions
are likely to change or additional information might be required, creating a subroutine makes
sense.

Quick Check

Q. To promote code reuse within a script, where is one place you can position the code?

A. You can place the code within a subroutine.

Q. To make changing business rules easier to update, where is a good place to position
the rules?

A. You can place business rules within a subroutine to make them easier to update.

Calling the Subroutine

In the next script you’ll examine, SubRoutineScript.vbs, the comparison of a, b, and c is done
by using a subroutine called Compare. To use a subroutine, you simply place its name on a line
by itself. Notice that you don’t need to declare the name of the subroutine because it isn’t a
variable. So, the script works even though you specified Option Explicit and did not declare
the name used for the subroutine. In fact, you cannot declare the name of your subroutine. If
you do, you will get a “name redefined” error.

332 Part III Advanced Windows Administration
Creating the Subroutine

Once you decide to use a subroutine, the code for creating it is very light. Indeed, all that is
required is the word Sub followed by the name you will assign to the subroutine. In the
SubRoutineScript.vbs script, the subroutine is assigned the name Compare by the following
line: Sub Compare. That’s all there is to it. You then write the code that performs the compari­
son and end the subroutine with the command End Sub. After you do all that, you have your
subroutine.

SubRoutineScript.vbs
Option Explicit

Dim a, b, c

Dim num1, num2

a=1

b=2

c=3

num1 = a

num2 = b

compare

num1 = b

num2 = c

compare

num1 = a + b

num2 = c

compare

Sub Compare

If num1 = num2 Then

WScript.Echo (num1 & " and " & num2 & " are equal")

Else

WScript.Echo(num1 & " and " & num2 & " are not equal")

End If

End Sub

Just the Steps To create a subroutine

1. Begin the line of code with the word Sub followed by name of the subroutine.

2. Write the code that the subroutine will perform.

3. End the subroutine by using the End Sub command on a line by itself.

Creating Users and Logging Results

As your scripts become more powerful, they have a tendency to become longer and longer.
The next script, CreateUsersLogAction.vbs, is nearly 80 lines long. The reason for this length
is that you perform three distinct actions. First, you read a text file and parse the data into an

Chapter 15 Using Subroutines and Functions 333
array. Then you use this array to create new users and add the users into an existing group in
Active Directory. As you create users and add them to groups, you want to create a log file and
write the names of the created users. All the code to perform these actions begins to add up
and can make a long script hard to read and understand. The subroutine becomes rather use­
ful in such a situation. In fact, the subroutine used to create the log file is nearly 30 lines long
itself because you need to check whether the folder exists or the log file exists. If the folder or
file does not exist, you need to create it. If each is present, you need to open the file and
append data to it. By placing this code into a subroutine, you are able to access it each time
you loop through the input data you’re using to create the users in the first place. After the
user is created, you go to the subroutine, open the file, write to it, close the file, and then go
back into Do Until…Loop to create the next user.

Note Holding the text file open might seem like an easier approach than closing the file, but
I prefer to close the file after each loop so that I can guarantee the consistency of the file as a
log of the accounts that are being created. Closing the file offers other benefits as well. It
makes the operation more modular and therefore promotes portability. Making an open and
a close part of the routine hides complexity that could arise.

If you kept the file open and wrote to the log file in an asynchronous manner, your log writer
could get behind, and in the event of an anomaly, your log might not be an accurate reflection
of the actual accounts created on the server. Here is the CreateUsersLogAction.vbs script.

CreateUsersLogAction.vbs
Option Explicit

On Error Resume Next

Dim objOU

Dim objUser

Dim objGroup

Dim objFSO

Dim objFile

Dim objFolder

Dim objTextFile

Dim TxtIn

Dim strNextLine

Dim i

Dim TxtFile

Dim LogFolder

Dim LogFile

TxtFile = "C:\UsersAndGroups.txt"

LogFolder = "C:\FSO"

LogFile = "C:\FSO\fso.txt"

Const ForReading = 1

Const ForWriting = 2

Const ForAppending = 8

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

334 Part III Advanced Windows Administration
Do Until objTextFile.AtEndOfStream

strNextLine = objTextFile.ReadLine

TxtIn = Split(strNextLine , ",")

Set objOU = GetObject("LDAP://OU=mred," _

& "dc=nwtraders,dc=msft")

Set objUser = objOU.Create("User", "cn="& TxtIn(0))

objUser.Put "sAMAccountName", TxtIn(0)

objUser.SetInfo

Set objGroup = GetObject _

("LDAP://CN="& TxtIn(1) & ",cn=users," _

& “dc=nwtraders,dc=msft”)

objGroup.add _

"LDAP://cn="& TxtIn(0) & ",ou=Mred," _

& "dc=nwtraders,dc=msft"

Logging

Loop

Sub Logging

If objFSO.FolderExists(LogFolder) Then

If objFSO.FileExists(LogFile) Then

Set objFile = objFSO.OpenTextFile _

(LogFile, ForAppending)

objFile.WriteBlankLines(1)

objFile.Writeline "Creating User " & Now

objFile.Writeline TxtIn(0)

objFile.Close

Else

Set objFile = objFSO.CreateTextFile(LogFile)

objFile.Close

Set objFile = objFSO.OpenTextFile _

(LogFile, ForWriting)

objFile.WriteLine "Creating User " & Now

objFile.WriteLine TxtIn(0)

objFile.Close

End If

Else

Set objFolder = objFSO.CreateFolder(LogFolder)

Set objFile = objFSO.CreateTextFile(LogFile)

objFile.Close

Set objFile = objFSO.OpenTextFile _

(LogFile, ForWriting)

objfile.WriteLine "Creating User " & Now

objFile.WriteLine TxtIn(0)

objFile.Close

End If

End Sub

WScript.Echo("all done")

Chapter 15 Using Subroutines and Functions 335
Header Information
The Header information section of CreateUsersLogAction.vbs is used to declare all the vari­
ables used in the script. Thirteen variables are used in the script. The variable i is a simple
counter and is not listed in Table 15-1 with the other variables.

Table 15-1 Variables Used in CreateUsersLogAction.vbs

Variable Description

objOU Holds connection to target OU in Active Directory.

objUser Holds hook for Create user command; takes TxtIn(0) as input for user name.

objGroup Holds hook for the add command; takes TxtIn(1) as input for name of group and
TxtIn(0) as name of user to add.

objFSO Holds hook that comes back from the CreateObject command used to create the
FileSystemObject.

objFile Holds hook that comes back from the OpenTextFile command issued to objFSO.

objFolder Holds hook that comes back from the CreateFolder command issued to objFSO
if the folder does not exist.

objTextFile Holds the data stream that comes from the OpenTextFile command that is used
to open the UsersAndGroups.txt file.

TxtIn An array that is created from parsing strNextLine. Each field split by the comma
becomes an element in the array. Holds user name to be created and the group
that the user is to be added to.

strNextLine Holds one line worth of data from the UsersAndGroups.txt file.

TxtFile Holds path and name of text file to be parsed as input data.

LogFolder Holds path and name of folder used to hold logging information.

LogFile Holds path and name of text file to be used as the log file.

Reference Information

The Reference information section of the script is used to assign values to some of the vari­
ables in the script. In addition to the mundane items such as defining the path and title for the
text file used to hold the users and groups, in this section, you create three constants that are
used in working with text files.

Note If you create standard variable names, and you consistently use them in your scripts,
you will make it easier to reuse your subroutines without any modification. For instance, if you
use objFSO consistently for creating FileSystemObject, you minimize the work required to
“rewire” your subroutine. Of course, using the Find and Replace feature of Microsoft Notepad,
or any other script editor, makes it rather easy to rename variables.

These constants are ForReading, ForWriting, and ForAppending. The use of these constants was
discussed in detail in Chapter 4, “Working with Arrays.” The last two tasks done in the Refer­
ence information section of the script are creating an instance of the FileSystemObject and

336 Part III Advanced Windows Administration
using the OpenTextFile command so that you can read it in the list of users that need to be cre­
ated and the group to which each user will be assigned. Here is the Reference information sec­
tion of the script:

TxtFile = "C:\UsersAndGroups.txt"

LogFolder = "C:\FSO"

LogFile = "C:\FSO\fso.txt"

Const ForReading = 1

Const ForWriting = 2

Const ForAppending = 8

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

Worker Information

The Worker information section of the script is where the users are actually created and
assigned to a group. To work through the UsersAndGroups.txt file, you need to make a con­
nection to the file. This was done in a previous Reference information section of the script, in
which we assigned objTextFile to be equal to the hook that came back once the connection
into the file was made. Think back to the pipe analogy (in Chapter 5, “More Arrays”), in which
you set up a pump and pulled the text, one line at a time, into a variable called strNextLine. As
long as data is in the text file, you can continue to pump the information by using the Read-
Line command. However, if you reach the end of the text stream, you exit the Do Until…Loop
statement you created.

Do Until objTextFile.AtEndOfStream

strNextLine = objTextFile.ReadLine

TxtIn = Split(strNextLine , ",")

Set objOU = GeCreateUsersLogAction.vbstObject("LDAP://OU=Mred," _

& "dc=nwtraders,dc=msft")

Set objUser = objOU.Create("User", "cn="& TxtIn(0))

objUser.Put "sAMAccountName", TxtIn(0)

objUser.SetInfo

Set objGroup = GetObject _

("LDAP://CN="& TxtIn(1) & ",cn=users," _

& "dc=nwtraders,dc=msft")

objGroup.add _

"LDAP://cn="& TxtIn(0) & ",ou=Mred," _

& "dc=nwtraders,dc=msft"

Logging

Loop

Output Information

Once you create a new user and assign that user to a group, you need to log the script changes.
To do this, you call a subroutine (in our script, called Logging) that opens a log file and writes
the name of the new user that was created as well as the time in which the creation occurred.
The first task the Logging subroutine does is check for the existence of the logging folder that

Chapter 15 Using Subroutines and Functions 337
is defined by the variable LogFolder. To check for the presence of the folder, you use the Folder-
Exists method. If the folder is present on the system, you next check for the existence of the
logging file defined by the LogFile variable. To check for the presence of the logging file, you
use the FileExists method. If both of these conditions are copasetic, you open the log file by
using the OpenTextFile command and specify that you will append to the file instead of over­
writing it (which is normally what you want a log file to do). In writing to the file, you use two
different methods: WriteBlankLines to make the log a little easier to read, and WriteLine to
write the user name and the time that user was created in the log.

If, on the other hand, the log folder exists but the log file does not exist, you need to create the
log file prior to writing to it. This is the subject of the first Else command present in the sub­
routine. You use the CreateTextFile command and the LogFile variable to create the log file.
After the file is created, you must close the connection to the file; if you do not, you get an error
message stating that the file is in use. After you close the connection to the log file, you reopen
it by using the OpenTextFile command, and then you write your information to the file.

The other scenario our subroutine must deal with is if neither the folder nor the log file is in
existence, in which case you have to create the folder (by using the CreateFolder method) and
then create the file (by using the CreateTextFile method). It is necessary to use objFile.Close to
close the connection to the newly created text file so that you can write your logging informa­
tion to the file. Once you write to the log file, you exit the subroutine by using the End Sub
command, and you enter Do Until…Loop again. The Logging subroutine is shown here:

Sub Logging

If objFSO.FolderExists(LogFolder) Then

If objFSO.FileExists(LogFile) Then

Set objFile = objFSO.OpenTextFile _

(LogFile, ForAppending)

objFile.WriteBlankLines(1)

objFile.WriteLine "Creating User " & Now

objFile.WriteLine TxtIn(0)

objFile.Close

Else

Set objFile = objFSO.CreateTextFile(LogFile)

objFile.Close

Set objFile = objFSO.OpenTextFile _

(LogFile, ForWriting)

objfile.WriteLine "Creating User " & Now

objFile.WriteLine TxtIn(0)

objFile.Close

End If

Else

Set objFolder = objFSO.CreateFolder(LogFolder)

Set objFile = objFSO.CreateTextFile(LogFile)

objFile.Close

Set objFile = objFSO.OpenTextFile _

(LogFile, ForWriting)

objfile.WriteLine "Creating User " & Now

objFile.WriteLine TxtIn(0)

338 Part III Advanced Windows Administration
objFile.Close

End If

End Sub

WScript.Echo("all done")

Using a subroutine to retrieve service information from WMI

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates\wmiTemplate.vbs
script in Notepad or your favorite script editor and save it as YourNameListServicesIn-
Processes.vbs.

2.	 Comment out On Error Resume Next.

3.	 Edit the wmiQuery line so that you are selecting only processID and the name from
win32_Process. You want to, however, exclude the process ID that equals 0. This query
will look like the following:

wmiQuery = "Select processID, name from win32_Process where processID <> 0"

4.	 In the Header section of the script, declare a new variable to hold the process ID. Call
this variable intPID.

5.	 Inside the For Each…Next loop, delete all the WScript.Echo ": " & objItem lines except for
one. The completed For Each…Next loop will look like the following:

For Each objItem in colItems

WScript.Echo ": " & objItem.

Next

6.	 Modify the WScript.Echo line so that it prints out the name and the processed properties
from the win32_Process class. Include labels with each property to identity each of the
properties as belonging to a process. My code to do this looks like the following:

WScript.Echo "Process Name: " & objItem.Name & " ProcessID: " & objItem.ProcessID

7.	 Store the value of the process ID in the variable intPID. This is seen below:

intPID = objItem.ProcessID

8.	 Save and run YourNameListServicesInProcesses.vbs. There should be no errors at this
point, and you should see an output similar to the following (of course your list of pro­
cesses will be different). The process names and the process IDs seen in the output from
your script will compare to the ones seen in Taskmanager.exe (refer to Figure 15-1).

Process Name: System ProcessID: 4

Process Name: smss.exe ProcessID: 776

Process Name: csrss.exe ProcessID: 868

Process Name: winlogon.exe ProcessID: 892

Process Name: services.exe ProcessID: 940

Process Name: lsass.exe ProcessID: 952

Process Name: svchost.exe ProcessID: 1136

Chapter 15 Using Subroutines and Functions 339
Process Name: svchost.exe ProcessID: 1228

Process Name: svchost.exe ProcessID: 1352

Process Name: spoolsv.exe ProcessID: 1640

Process Name: explorer.exe ProcessID: 832

Process Name: wmiprvse.exe ProcessID: 632

Process Name: wmiprvse.exe ProcessID: 1436

Process Name: WINWORD.EXE ProcessID: 3764

Process Name: svchost.exe ProcessID: 2428

Process Name: PrimalScript.exe ProcessID: 2872

Process Name: cscript.exe ProcessID: 584

Process Name: wmiprvse.exe ProcessID: 3652

Figure 15-1 Taskmanager.exe view of processes and services; Svchost is comprised of
several services.

9. Create a subroutine called SubGetServices. This is seen below:

' *** subs are below ***

Sub subGetServices

End Sub

10.	 Inside your new subroutine, declare three variables that will be used in the secondary
Windows Management Instrumentation (WMI) query. One variable will contain the
query, one will contain the collection returned by the query, and one will hold the indi­
vidual service instances retrieved from the collection. The three variables you want to
declare correspond to the variables used in the main body of the script: wmiQuery1,
colItems1, objItem1.

Dim wmiQuery1

Dim colItems1

Dim objItem1

340 Part III Advanced Windows Administration
11.	 Under the new variables you declared in the subroutine, assign a new query to
wmiQuery1 that selects the name from WIN32_Service, where processID is the same as
the one stored in intPID. This query will look like the following:

wmiQuery1 = "Select name from win32_Service where processID = " & intPID

12.	 On the line following wmiQuery1, use the colItems1 variable to hold the collection that is
returned by using the execQuery method to execute the query contained in wmiQuery1.
This code will look like the following:

Set colItems1 = objWMIService.ExecQuery(WmiQuery1)

13.	 Use For Each…Loop to walk through colItems1. Use WScript.Echo to print out the name of
each service that corresponds to the query defined in wmiQuery1. This is seen below:

For Each objItem1 In colItems1

WScript.Echo vbTab, "Service Name: ", objItem1.Name

Next

14.	 In the main body of the script, after the line where the process ID is assigned to intPID,
call the subroutine you just created. The placement of the call to subGetServices is seen
below:

intPID = objItem.ProcessID

subGetServices

15.	 Save and run your script. You should see a printout that now lists services running
inside processes. Compare your results with the listing below. If you do not see some­
thing like this (realizing the processes and services will be different), compare your
script with \My Documents\Microsoft Press\VBScriptSBS\ch15\ListServicesIn
Processes.vbs.

Process Name: System ProcessID: 4

Process Name: smss.exe ProcessID: 776

Process Name: csrss.exe ProcessID: 868

Process Name: winlogon.exe ProcessID: 892

Process Name: services.exe ProcessID: 940

Service Name: Eventlog

Service Name: PlugPlay

Process Name: lsass.exe ProcessID: 952

Service Name: ProtectedStorage

Service Name: SamSs

Process Name: svchost.exe ProcessID: 1136

Service Name: DcomLaunch

Process Name: svchost.exe ProcessID: 1228

Service Name: RpcSs

Process Name: svchost.exe ProcessID: 1352

Service Name: AudioSrv

Service Name: CryptSvc

Service Name: EventSystem

Service Name: Nla

Service Name: RasMan

Chapter 15 Using Subroutines and Functions 341
Service Name: SENS

Service Name: ShellHWDetection

Service Name: TapiSrv

Service Name: winmgmt

Process Name: spoolsv.exe ProcessID: 1640

Service Name: Spooler

Process Name: explorer.exe ProcessID: 832

Process Name: wmiprvse.exe ProcessID: 632

Process Name: wmiprvse.exe ProcessID: 1436

Process Name: WINWORD.EXE ProcessID: 3764

Process Name: svchost.exe ProcessID: 2428

Service Name: stisvc

Process Name: wmplayer.exe ProcessID: 172

Process Name: Dancer.exe ProcessID: 1180

Process Name: PrimalScript.exe ProcessID: 1920

Process Name: wmiprvse.exe ProcessID: 3156

Process Name: cscript.exe ProcessID: 3468

Working with Functions
You have already used functions that are predefined in VBScript. These form the crux of most
of the flexibility of VBScript. VBScript has more than 100 intrinsic functions, which provide
the ability to perform string manipulation (mid, len, instr, instrrev), work with arrays (array,
ubound, lbound, split, join), and control the way numbers are handled (int, round, formatnum­
ber). With so much functionality, you might wonder why you need to create your own func­
tions. Although you can write much code that does not require functions, there may be times
when functions will make it easier to reuse your code. In addition, functions often make it eas­
ier to read and understand what the script is doing. In the VideoAdapterRam_Hard
Coded.vbs script, video RAM is retrieved in bytes. To convert the number into something
more manageable, we convert it into megabytes by dividing the number by 1,048,576. This
causes a readability problem, as seen below.

VideoAdapterRAM_HardCoded.vbs
Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select AdapterRAM from win32_videoController"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

WScript.Echo "AdapterRAM: " & objItem.AdapterRAM/1048576

Next

342 Part III Advanced Windows Administration
Add a function to convert to megabytes

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch15\VideoAdapter
Ram_HardCoded.vbs script in Notepad or the script editor of your choice and save it as
YourNameVideoAdapterRam_UseFunction.vbs.

2.	 At the bottom of the script, begin the function by using the command function call and
name the function convertToMeg. Define a single input to the function as intIn. Close out
the function by using the End Function command. This is seen below:

Function convertToMeg(intIN)

End Function

3.	 Between the Function and the End Function statements, divide intIN by 1,048,576 and
assign the results to convertToMeg, as seen below:

convertToMeg = intIN/1048576

4.	 In the WScript.Echo line in the main script, call the convertToMeg function and supply
objItem.AdapterRAM as the input parameter to the function. The modified output line is
seen below:

WScript.Echo "AdapterRAM: " & convertToMeg(objItem.AdapterRAM)

5.	 Save and run the script. You should see the amount of video RAM reported in mega­
bytes. If not, compare your script with \My Documents\Microsoft Press\VBScriptSBS
\ch15\ VideoAdapterRam_UseFunction.vbs.

Comparing intrinsic function and user defined function

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates\Blank
Template.vbs script in Notepad or the script editor of your choice and save the script as
YourNameFunString.vbs.

2.	 Add Option Explicit to the first noncommented line.

3.	 Use WScript.Echo to print out a line that calls the VBScript String intrinsic function. Tell
the String function to repeat a dash character 15 times. This is seen below:

WScript.Echo "Intrinsic string function",VbCrLf,string(15,"-")

4.	 At the bottom of the script, create a function called funString. Have the function accept
two input parameters called intIN and strChar. Close out the function by using End Func­
tion. This is seen below:

Function funString(intIN,strChar)

End Function

5.	 Inside the funString function, declare a variable to be used as a counter. Call this
variable j.

Chapter 15 Using Subroutines and Functions 343
6.	 Use a For Each…Next loop to build up the string of repeated characters. Use j to count
from one to intIN.

For j = 1 To intIN

Next

7.	 Between For j = 1 to intIN and Next, add funString to itself and to strChar, as seen below:

funString = funString & strChar

8.	 Copy the previous WScript.Echo line and replace the String function with the funString
function, as seen below:

WScript.Echo "User string function",VbCrLf,funString(15,"-")

9.	 Save and run your script. The results from the two functions should be exactly the same.
If they are not, compare your script with \My Documents\Microsoft Press\VBScriptSBS
\ch15\FunString.vbs.

Using ADSI and Subs, and Creating Users
Step-by-Step Exercises

In this section, you will expand the script used in this chapter. Instead of creating only a user,
you will add information to the user. You will use a subroutine to perform logging.

1.	 Open Notepad or your favorite script editor.

2.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch15\StepByStep\Cre­
ateUsers.vbs file and save it as YourNameCreateMultipleUsersSolution.vbs.

3.	 Make sure you have a file called C:\fso\UsersAndGroups.txt, and run the
CreateUsers.vbs file. Go into Active Directory Users And Computers (ADUC) and delete
the users that were created.

4.	 Cut the code used to open the text file that holds the names of users to add to Active
Directory. It is under the variable declarations, in the Reference information section of
the script. It is five lines long. This code looks like the following:

TxtFile = "C:\fso\UsersAndGroups.txt"

Const ForReading = 1

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

5.	 Paste the code after the WScript.Echo command at the end of the script.

344 Part III Advanced Windows Administration
6.	 Under the declarations, where the txtFile code used to be, type ReadUsers. This is the
name of the new subroutine you will create. It will look like the following:

Dim objOU

Dim objUser

Dim objGroup

Dim objFSO

Dim objTextFile

Dim TxtIn

Dim strNextLine

Dim i

Dim TxtFile

dim boundary

ReadUsers

7.	 On the line before the code that reads TxtFile, which you copied to the end of your

script, use the Sub command to create a subroutine called ReadUsers.

8.	 At the end of the subroutine, add the End Sub command. The completed subroutine

looks like the following:

Sub ReadUsers

TxtFile = "c:\fso\UsersAndGroups.txt"

Const ForReading = 1

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

End Sub

9.	 Save your work. Run the script to make sure it still works. Open Active Directory Users
And Computers and delete the users that were created by running the script.

10.	 Modify the subroutine so that it is reading a text file called MoreUsersAndGroups.txt.
This file is located in the \My Documents\Microsoft Press\VBScriptSBS\ch15\Step
ByStep folder.

Note If you do not add the full path to the MoreUsersAndGroups.txt file, you will
need to ensure you are running the script from the same directory where the file is
located.

11.	 In the Worker section of the script that creates the user, use the Put method to add the
user’s first name, last name, building, and phone number. The Active Directory
attributes are called givenName, sn, physicalDeliveryOfficeName, and telephoneNumber.
Each of these fields is in the array that gets created, so you need to increment the array
field. The completed code will look like the following:

Set objUser = objOU.Create("User", "cn="& TxtIn(0))

objUser.Put "sAMAccountName", TxtIn(0)

objUser.Put "givenName", TxtIn(1)

objUser.Put "sn", TxtIn(2)

Chapter 15 Using Subroutines and Functions 345
objUser.Put "physicalDeliveryOfficeName", TxtIn(3)

objUser.Put "telephoneNumber", TxtIn(4)

12.	 Because the group membership field is the last field and you added fields to the text file,
you need to increment the array index that is used to point to the group field. The new
index number is 5, and the code will look like the following:

Set objGroup = GetObject _

("LDAP://CN="& TxtIn(5) & ",cn=users,dc=nwtraders,dc=msft")

13.	 Save the script and run it. After you successfully run the script, delete the users created
in Active Directory.

One Step Further: Adding a Logging Subroutine
In this section, you add logging capability to the script you finished in the Step-by-Step exercise.

1.	 Open Notepad or some other script editor.

2.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch15\OneStepFurther\Create
MultipleUsersStarter.vbs and save the file as YourNameCreateMultipleUsers
Logged.vbs.

3.	 After the objGroup.add command statement but before the Loop command, add a call
to the subroutine called LogAction. The modification to the script will look like the
following:

Set objGroup = GetObject _

("LDAP://CN="& TxtIn(5) & ",cn=users,dc=nwtraders,dc=msft")

objGroup.Add _

"LDAP://cn="& TxtIn(0) & ",ou=Mred,dc=nwtraders,dc=msft"

LogAction

Loop

4.	 Under the ReadUsers subroutine, add a subroutine called LogAction. This will consist of
the Sub command and the End Sub command. Leave two blank lines between the two
commands. The code will look like the following:

Sub LogAction

End Sub

5.	 Save your work.

6.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch15\OneStepFurther\
CreateLogFile.vbs file and copy all the variable declarations. Paste them under the vari­
ables in your script.

7.	 Delete the extra objFSO variable.

346 Part III Advanced Windows Administration
8.	 Copy the three reference lines from the CreateLogFile.vbs script and paste them under
the variable declarations. This section of the script now looks like the following:

Dim objOU

Dim objUser

Dim objGroup

Dim objFSO

Dim objTextFile

Dim TxtIn

Dim strNextLine

Dim i

Dim TxtFile

Dim objFile 'holds hook to the file to be used

Dim message 'holds message to be written to file

Dim objData1 'holds data from source used to write to file

Dim objData2 'holds data from source used to write to file

Dim LogFolder

Dim LogFile

message="Reading computer info " & Now

objData1 = objRecordSet.Fields("name")

objData2 = objRecordSet.Fields("distinguishedName")

9.	 Modify the message so that it states that the code is creating a user, and use the element
TxtIn(0) as the user name that gets created. This modified line will look like the
following:

message="Creating user " & TxtIn(0) & Now

10.	 Move the message line to the line after you parse strNextLine. You do this because you
are using an element of the array that must be an assigned value before it can be used.

strNextLine = objTextFile.ReadLine

TxtIn = Split(strNextLine , ",")

message="Creating user " & TxtIn(1) & Now

11.	 Modify the objData1 and objData2 data assignments. Use TxtIn(0) for the user field and
TxtIn(5) for the group. The two lines will look like the following:

objData1 = TxtIn(0)

objData2 = TxtIn(5)

12.	 Copy the remainder of the script and paste it between the two lines used to create the
subroutine. The completed section looks like the following:

Sub LogAction

If objFSO.FolderExists(LogFolder) Then

If objFSO.FileExists(LogFile) Then

Set objFile = objFSO.OpenTextFile(LogFile, ForAppending)

objFile.WriteBlankLines(1)

objFile.Writeline message

objFile.Writeline objData1

objFile.Writeline objData2

objFile.Close

Else

Set objFile = objFSO.CreateTextFile(LogFile)

objFile.Close

Chapter 15 Using Subroutines and Functions 347
Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

objfile.WriteLine message

objFile.WriteLine objData1

objFile.WriteLine objData2

objFile.Close

End If

Else

Set objFolder = objFSO.CreateFolder(LogFolder)

Set objFile = objFSO.CreateTextFile(LogFile)

objFile.Close

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

objfile.writeline message

objFile.WriteLine objData1

objFile.WriteLine objData2

objFile.Close

End If

End Sub

13. Save and run the script.

Chapter 15 Quick Reference

To Do This

Create a subroutine Begin a line with the word Sub followed by the name
of the subroutine. You end the subroutine by using
the command End Sub on a line following your
subroutine code.

Call a subroutine Place the name of the subroutine on a line by itself
at the place in your code where you want to use the
subroutine.

Make code more portable and easier to
read and troubleshoot, and to promote
code reuse

Use a subroutine.

Chapter 16

Logon Scripts

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the fol­
lowing concepts from earlier chapters:

■ Using Windows Management Instrumentation (WMI)

■ Using Active Directory Service Interfaces (ADSI)

■ Using the InStr function

■ Implementing the For…Next statement

■ Implementing the Select Case statement

■ Implementing file system objects

After completing this chapter, you will be able to:

■ Use the IADsADSystemInfo interface

■ Use WshNetwork

■ Use the Join function

■ Creat dynamic logon scripts

■ Implement logging for logon scripts

Working with IADsADSystemInfo
In this section, you will use the IADsADSystemInfo interface to obtain data about the local com­
puter. The IADsADSystemInfo interface is implemented to provide access to the ADSystemInfo
class. Because this class resides in the Adsldp.dll file, which is part of ADSI, it is present on
Microsoft Windows Server 2003, Windows XP, and even Windows 2000. To use
IADsADSystemInfo, you need to create the object by creating an instance of the ADSystemInfo
class. This process is actually simple—you use the CreateObject command. Table 16-1 summa­
rizes the nine properties exposed by IADsADSystemInfo.

Table 16-1 Properties Exposed by IADsADSystemInfo

Property Meaning

ComputerName Retrieves the distinguished name of the local computer
349

350 Part III Advanced Windows Administration
Table 16-1 Properties Exposed by IADsADSystemInfo

Property Meaning

DomainDNSName Retrieves the Domain Name System (DNS) name of the local computer’s
domain

DomainShortName Retrieves the short name of the local computer’s domain (the network
basic input/output system [NetBIOS] version of the name)

ForestDNSName Retrieves the DNS name of the local computer’s forest

IsNativeMode Determines whether the local computer’s domain is native or mixed mode

PDCRoleOwner Retrieves the distinguished name of the domain controller (DC) that
owns the primary domain controller (PDC) emulator role in the local
computer’s domain

SchemaRoleOwner Retrieves the distinguished name of the Schema Master in the local
computer’s forest

SiteName Retrieves the site name in which the local computer resides

UserName Retrieves the distinguished name of the currently logged-on user

The advantage of using IADsADSystemInfo over other means of gaining user and computer
information is that IADsADSystemInfo retrieves fully qualified domain names, which are imme­
diately useful when working with Active Directory. In addition to the nine properties listed in
Table 16-1, IADsADSystemInfo provides 13 methods. However, most of these methods dupli­
cate the properties listed in Table 16-1, so Table 16-2 describes only the methods that provide
additional information.

Table 16-2 IADsADSystemInfo Methods Providing Unique Information

Method Description

GetAnyDCName Retrieves the DNS name of a domain controller in the local computer’s
domain

RefreshSchemaCache Refreshes ADSI’s Active Directory schema cache on the local computer

GetTrees Retrieves the DNS names of all the directory trees in the local
computer’s forest; returned as an array

The following script, called SysInfo.vbs, illustrates using the IADsADSystemInfo interface. In
the first line, you use objSysInfo to hold the object that comes back when you use CreateObject
to create an instance of ADSystemInfo. After you do this, you use the RefreshSchemaCache
method to refresh the Active Directory schema cache that is resident on the local computer.
Performing this step ensures that you are working with the most recent copy of the Active
Directory schema. After refreshing the schema cache on the local machine, you echo out the
pertinent information. The only step that is a little tricky is the use of For Each…Next to walk
through the array that is returned when you use the GetTrees method. This step is required,
even when only one domain is present in the forest.

SysInfo.vbs
Set objSysInfo = CreateObject("ADSystemInfo")

objSysInfo.RefreshSchemaCache

Chapter 16 Logon Scripts 351
WScript.Echo "User name: " & objSysInfo.UserName

WScript.Echo "Computer name: " & objSysInfo.ComputerName

WScript.Echo "Site name: " & objSysInfo.SiteName

WScript.Echo "Domain short name: " & objSysInfo.DomainShortName

WScript.Echo "Domain DNS name: " & objSysInfo.DomainDNSName

WScript.Echo "Forest DNS name: " & objSysInfo.ForestDNSName

WScript.Echo "PDC role owner: " & objSysInfo.PDCRoleOwner

WScript.Echo "Schema role owner: " & objSysInfo.SchemaRoleOwner

WScript.Echo "Domain is in native mode: " & objSysInfo.IsNativeMode

WScript.Echo "Active Directory DomainController: " & objSysInfo.GetAnyDCName

For Each tree In objSysInfo.GetTrees

WScript.Echo "Domain trees: " & tree

Next

Using Logon Scripts
In the old days, network administrators spent hours and hours trying to craft the perfect
logon script. In the end, it was a fruitless effort, because needs were always changing and the
capabilities of logon scripts were limited. Many networks today seem to run just fine without
a logon script. With the widespread adoption of Group Policy, some people might question
why we need logon scripts at all. However, when using Microsoft Visual Basic, Scripting Edi­
tion (VBScript) for your logon scripts, you can craft some very powerful solutions for config­
uring and maintaining your users’ environments. In addition, because Group Policy is often
handled by a separate department within enterprise networks, making a change to a logon
script can be easier than talking another department into modifying its “perfect Group Policy.”
Logon scripts can be quickly called into service to perform several tasks:

■ Mapping network drives

■ Mapping printers

■ Collecting system information

■ Checking antivirus signatures

■ Checking hotfix and security updates

■ Checking security settings

Just the Steps To create powerful and flexible logon scripts

1. Use IADsADSystemInfo to determine user information.

2. Use ADSI to query for group membership information.

3. Use Windows Scripting Host (WSH) to map network drives.

4. Use WSH to set default printers.

352 Part III Advanced Windows Administration
Deploying Logon Scripts
Perhaps the simplest way to implement a logon script is to modify the Logon Script User
attribute. Although you can assign logon scripts to users by using the graphical user interface
(GUI), you can also do this easily by using the scriptpath Active Directory attribute of the User
object. I prefer, however, to use Group Policy to assign the logon script to users. However you
choose to assign logon scripts to your users, once you write the script, this script will need to
be saved in the Sysvol share in the Scripts directory as seen in Figure 16-1.

Figure 16-1 Sysvol share in Active Directory; logon scripts and accessory scripts

If you do this, you can link the script to multiple Group Policy Objects (GPOs). You could, of
course, also save the logon script within the actual GPO itself. If you choose to save it in this
way, you will not be able to reuse the script with other GPOs. In fact, you could end up delet­
ing the script if you delete the GPO that is hosting the script. Linking a logon script to a GPO
is illustrated in Figure 16-2.

Figure 16-2 GPO logon script; assign the logon script to the User object in Group Policy

Chapter 16 Logon Scripts 353
So what does a VBScript logon script look like? The following script, LogonScript.vbs, is sim­
ilar to many logon scripts I’ve used with customers in the past. It has several advantages over
the old-fashioned batch files that many of you grew up with. We’ll discuss these advantages as
we examine each section that makes up LogonScript.vbs.

Note The logon script below will fail if the user is a member of only one group. There are
several ways to fix this problem … the simplest is to simply use On Error Resume Next. Another
way would be to use an error handler, and then if it fails the first time, come back and repeat
the line without the Join function.

LogonScript.vbs
Option Explicit

Dim fServer

Dim pServer

Dim home

Dim wshNet

Dim ADSysInfo

Dim CurrentUser

Dim strGroups

Dim GroupMember

Dim a,b,c

Const HR = "cn=hrgroup"

Const MARKETING = "cn=marketinggroup"

Const SALES = "cn=salesgroup"

fServer = "\\london"

pServer = "\\london"

home = "\\london\users"

Set wshNet = CreateObject("WScript.Network")

Set ADSysInfo = CreateObject("ADSystemInfo")

Set CurrentUser = GetObject("LDAP://" & ADSysInfo.UserName)

strGroups = LCase(Join(CurrentUser.MemberOf))

wshNet.MapNetworkDrive "h:", fServer & "\Users\" & wshNet.UserName

WScript.Echo(wshNet.Username & " " & strgroups)

Select Case GroupMember

case a = InStr(strGroups, HR)

HRsub

case b = InStr(strGroups, SALES)

SalesSub

case c = InStr(strGroups, MARKETING)

MarketingSub

End Select

' *** departmental subs are below *****

Sub HRsub

wshNet.MapNetworkDrive "g:",fServer & "\Hr"

wshNet.AddWindowsPrinterConnection pServer &"\HrPrinter"

354 Part III Advanced Windows Administration
wshNet.SetDefaultPrinter pServer & "\HrPrinter"

subRunScript

End Sub

Sub SalesSub

wshNet.MapNetworkDrive "s:", fServer & "\Sales"

wshNet.AddWindowsPrinterConnection pServer & "\SalesPrinter"

wshNet.SetDefaultPrinter pServer & "\SalesPrinter"

End Sub

Sub MarketingSub

wshNet.MapNetworkDrive "m:", fServer & "\Marketing"

wshNet.AddWindowsPrinterConnection pServer & "\MarketingPrinter"

wshNet.SetDefaultPrinter pServer & "\MarketingPrinter"

End Sub

Sub subRunScript

Dim objShell

Set objShell = CreateObject("wscript.shell")

objShell.run ("CheckForHotFix.vbs")

End Sub

Header Information

The Header information section of LogonScript.vbs includes the Option Explicit command
and the declaration of several variables.

Tip You don’t use On Error Resume Next in logon scripts because if the logon script fails, you
want to hear from your user community immediately. You don’t want to suppress error mes­
sages or risk mapping only a few of the drives that the users need to be able to perform their
work. I’ve seen situations in which the logon script messed up drive mappings for a group of
users, and these users had no idea where their data was stored. We wound up having to repro­
duce the error in a lab to determine what drives had been mapped for which user so that we
could find the work the users had “lost.” Once this was done, we removed error suppression on
the logon script, and although doing this might have resulted in a few more help desk calls, it
vastly simplified the consequences when the logon script failed.

Eleven variables are used in LogonScript.vbs. They are listed in Table 16-3.

Table 16-3 LogonScript.vbs Variables

Variable Use

fServer Holds the name of the file server. Used when mapping home directory for
the user.

pServer Holds name of the print server. Used when mapping printers for the user.

Home Holds the relative path of the users’ home directory share. This variable also
could be expanded by using site information to point the closed file server to
the users.

Chapter 16 Logon Scripts 355
Table 16-3 LogonScript.vbs Variables

Variable Use

wshNet Holds the object that comes back when you create an instance of
WScript.Network. You use this to allow the mapping of drives and printers.

ADSysInfo Holds the object that comes back when you create an instance of
ADSystemInfo. This allows you to obtain current user information.

CurrentUser Holds a connection into Active Directory using the Lightweight Directory
Access Protocol (LDAP) provider.

strGroups Holds a list of all the groups of which the user is a member.

GroupMember Used by the Select Case statement to hold the value of the group membership.

a,b,c Used with Select Case to determine case.

Tip Depending on how you decide to document your scripts, creating a table of variables
can be a powerful reference tool. I know some Internet administrators who print out all their
production scripts and store them in a binder along with their definitive software library (DSL).
Others store backup copies of production scripts on a network share and use remarks to doc­
ument the scripts. Even if you do not need a variable table for script documentation, you might
find that creating one is sometimes helpful as a reference when writing the script—it forces
you to think about the script flow, and in a long script, it is easier to work with a table than
scrolling back up to the Header information section of the script. This is a good habit to
develop if you program in C# or Microsoft Visual Basic .NET as well.

Reference Information

In addition to defining the variables listed in the Header information section of the script,
you also define some constants. The three constants hold the name of the groups that are
searched for by using the InStr command. In this example, the group memberships are
HrGroup, MarketingGroup, and SalesGroup. You assign the "cn=" version of the name to the
constants called HR, Marketing, and Sales. You do this because when you perform the query
for the group memberships, the string of data returned will include the full LDAP name of the
groups. However, to make the code easier to type and understand and thus easier to work
with, you assign the longer names to constants. The resultant code looks like the following:

Const HR = "cn=hrgroup"

Const MARKETING = "cn=marketinggroup"

Const SALES = "cn=salesgroup"

fServer = "\\london"

pServer = "\\london"

home = "\\london\users"

The remainder of the Reference information section appears in the code that follows. You use
a variable, fServer, to hold the name of the file server. This makes it easy to change the script if
you move the shared directories to other servers. If you did not use this variable, the drive
mappings would use the hardcoded Universal Naming Convention (UNC) path to a specific

356 Part III Advanced Windows Administration
server share. This means that if the data got moved to a different server, the logon script would
need to be modified in several places.

All the users’ home directories are in a shared directory called Users. If you move the share to
a different location, you will need to modify the home = "\\london\users" line in the script.
Changing this line is easier than making a change in the Home Folder field on the Profile tab
in Active Directory Users And Computers (ADUC). Change one line in the logon script, or
make thousands of changes via the GUI in ADUC—it seems to be a relatively painless choice!

Quick Check

Q. What are three ways of assigning a logon script to a user?

A. Three ways of assigning a logon script to a user are via the GUI interface by using Active
Directory Users And Computers, via VBScript by using the ScriptPath property, or by using
Group Policy.

Q. What are three common activities performed by logon scripts?

A. Three common activities performed by logon scripts are mapping to network shares,
mapping to network printers, and setting default printers for users.

Using the WshNetwork Class

The next order of business is wiring up three connections to turn on the power of VBScript in
our logon script. The first of these connections is used to hold the object that comes back
from creating an instance of the WScript.Network class. You use WScript.Network to create an
object that is called WshNetwork. WshNetwork enables you to connect to and disconnect from
network shares and network printers. In addition, we can use WshNetwork to map or remove
network shares or to access information about a user on a network. This said, you might be
asking yourself why we decided to use ADSystemInfo to obtain the user name. The reason is
that the user name coming from WshNetwork is a single-label name (for example, Bob). But to
query Active Directory to obtain all your group memberships, you need the distinguished
name (for example, a name like cn=bob, ou=LabOU, dc=nwtraders, dc=msft.) You can use the
distinguished name to make an LDAP binding and then to query all the information you need
to obtain for the logon script.

After you create an instance of WshNetwork, you are ready to connect to the IADsADSystemInfo
interface so that you can get information about the local computer and local user.

After you have an object providing access to the ADSystemInfo interface, you use the UserName
command to obtain the fully qualified local user name, and then combine that with the LDAP
provider and make a connection into Active Directory. The object that comes back from Active
Directory is called CurrentUser. You have now wired up all the connections necessary to get
the logon script up and running.

Chapter 16 Logon Scripts 357
You do need to define one more variable—a list of groups of which the current user is a
member. To do this, you use the MemberOf command. The problem is that the MemberOf
command will return with an array. In the following section, we will see how to address this
problem.

Using the Join Function
Although arrays are useful, dealing with an array will make your script a bit more com­
plicated—in fact, because you are interested only in the presence of a particular string
sequence, you don’t need an array at all. For assistance in dealing with the array, use the
VBScript Join function. The Join function returns a string that is created by putting
together (that is, joining) the data contained in the array elements. In this way, you can
easily use the InStr command to search the string for the presence of your group mem­
bership items. You can see an example of using the Join function in the Join.vbs script,
which you’ll examine in a moment.

Notice that you begin the Join.vbs script by declaring a five-element array. You then
assign a value to each element in the array. On the next-to-last line, you use the Join func­
tion to pull together all the elements of the array, which is called MyArray. The advan­
tage here is using an intermediate variable to hold the array, and then using another
variable to hold the string returned from the Join function. This adds a lot of flexibility to
your script. You assign the string that is returned from the Join function to a variable
called MyString. Because you now have a string that contains all the elements of the
array, you can use WScript.Echo to display the value of MyString.

Join.vbs
Option Explicit

Dim MyString

Dim MyArray(4)

MyArray(0) = "Mr."

MyArray(1) = "Sam"

MyArray(2) = "Spade,"

MyArray(3) = "Private"

MyArray(4) = "Eye"

MyString = Join(MyArray)

WScript.Echo(MyString)

Worker Information

The Worker information section of LogonScript.vbs comprises a single Select Case statement.
The Select Case statement is interesting because you are doing something new. GroupMember
is a variable used to evaluate the group membership. In reality, this variable is just a place­
holder, because you don’t use it anywhere else in the script. Each case is evaluated by InStr
and the corresponding subroutine is selected. The nice part of this Select Case statement hap­
pens on the other side of the equal signs. Instead of performing a simple match, you’re adding

358 Part III Advanced Windows Administration
a higher level of intelligence to the script and are requiring the Select Case statement to use the
InStr function to search the string data contained in the variable strGroups. Each case is there­
fore tested to see whether the string represented by each constant is found in strGroups. When
a match is found, the script jumps to the appropriate subroutine. This type of statement
makes the Worker information section extremely easy to read and understand.

Select Case GroupMember

case a = InStr(strGroups, HR)

HRsub

case b = InStr(strGroups, SALES)

SalesSub

case c = InStr(strGroups, MARKETING)

MarketingSub

End Select

Output Information
Once you work through each case in the Select Case statement, you enter into a subroutine.
Each subroutine is designed around the particular needs of various groups within your orga­
nization. The WScript.Echo commands let you know which subroutine is being run. These are
primarily used for troubleshooting and can be either left in or deleted, depending on the type
of customer experience your users are willing to put up with.

To map a network drive, you use the MapNetworkDrive method of a WshNetwork object. The
important issue to keep in mind here is that assigning a drive letter requires a letter and a
colon surrounded by double quotation marks. Next, a comma is required to separate the
drive letter from the path statement.

When you use WshNetwork to map to a printer, you use the AddWindowsPrinterConnection
method. (Although this command name is descriptive, it could have been shortened just a lit­
tle.) The AddWindowsPrinterConnection method needs only a Universal Naming Convention
(UNC) path to the print server and the share name. No commas are required here. (In fact,
commas here will cause the command to fail.)

The last task our subroutine needs to perform is assigning the default Windows printer, so
you use a method named SetDefaultPrinter. Again, the only work you need to do is include the
UNC path to the print server and encase the share name in double quotation marks. Here are
the subroutines for the Worker information section of the script:

Sub HRsub

wshNet.MapNetworkDrive "g:",fServer & "\Hr"

wshNet.AddWindowsPrinterConnection pServer &"\HrPrinter"

wshNet.SetDefaultPrinter pServer & "\HrPrinter"

subRunScript

End Sub

Sub SalesSub

wshNet.MapNetworkDrive "s:", fServer & "\Sales"

Chapter 16 Logon Scripts 359
wshNet.AddWindowsPrinterConnection pServer & "\SalesPrinter"

wshNet.SetDefaultPrinter pServer & "\SalesPrinter"

End Sub

Sub MarketingSub

wshNet.MapNetworkDrive "m:", fServer & "\Marketing"

wshNet.AddWindowsPrinterConnection pServer & "\MarketingPrinter"

wshNet.SetDefaultPrinter pServer & "\MarketingPrinter"

End Sub

Note To run the following script, you will need to have the following: AD configured; a
server called London; several groups—HRGroup, SalesGroup, MarketingGroup; file shares;
print shares; a set of users; and a set of home directories. Please edit the script below to match
your own test environment.

Call an additional script during logon

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch16\LogonScript.vbs in
Notepad or the script editor of your choice and save it as YourNameLogonScriptCall
ExternalScript.vbs.

2.	 At the bottom of your script, create a subroutine called subRunScript. This will look like
the following:

Sub subRunScript

End Sub

3.	 Declare a variable, objShell, that will be used to hold the wshShell object. These are added
into the subRunScript subroutine.

4.	 Create an instance of the wshShell object and assign it to the objShell variable. Use the
CreateObject method to do this, as seen in the following code:

Set objShell = CreateObject("WScript.Shell")

5.	 Use the Run method to launch the additional script. This is seen in the following code:

objShell.run ("CheckForHotFix.vbs")

6.	 Save and run your script by logging in from a remote machine (because ordinary users
do not have the ability to log on to the domain controller). If your script has problems,
compare it with \My Documents\Microsoft Press\VBScriptSBS\ch16
\LogonScriptCallExternalScript.vbs.

Capture an error from calling an additional script during logon

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch16\LogonScriptCall

ExternalScript.vbs script in Notepad or your script editor of choice and save it as

YourNameLogonScriptCallExternalScriptCaptureError.vbs.

360 Part III Advanced Windows Administration
2.	 In the subRunScript subroutine, add a variable to hold the return code from the Run
method. Call this variable intRTN.

3.	 On a new line after the intRTN variable, declare a constant called HideWindow and set it
equal to 1.

4.	 On a new line after the HideWindow constant, create a new constant called WaitForRe­
turn and set it equal to True. The completed Header and Reference section of the subRun-
Script subroutine now looks like the following:

Dim objShell

Dim intRTN

Const HideWindow = 0

Const WaitForReturn = True

5.	 Edit the objShell.run line of code, so that you use the intRTN variable to capture the
return code. Add the HideWindow constant and the WaitForReturn constants as addi­
tional parameters to the Run method. The completed line now looks like the following:

intRTN = objShell.run ("CheckForHotFix.vbs",HideWindow,WaitForReturn)

6.	 Use an inline If…Then statement to evaluate intRTN. If intRTN is not equal to 0, then use
WScript.Echo to print out the error. This is seen below:

If intRTN <> 0 Then WScript.Echo "Error",intRTN,"occurred"

7.	 Save and run your script by logging into the domain from a remote workstation. If your
script does not work as expected, compare it with \My Documents\Microsoft Press
\VBScriptSBS\ch16\ LogonScriptCallExternalScriptCaptureError.vbs.

Adding a Group to a Logon Script Step-by-Step Exercises
In this section, you will add a group to a logon script. To perform this exercise, you will need
the following (you can modify the following exercise to match your existing test network as
appropriate):

■	 Groups: hrGroup, MarketingGroup, ProductionGroup and SalesGroup

■	 A file server called London

■	 A User share called London\home

■	 Departmental shares called hr, sales, marketing, and production

■	 Printer shares called hrPrinter, marketingPrinter, productionPrinter, and salesPrinter

■	 An assortment of users who are members of the previously mentioned groups to test
with

■	 A remote workstation that is a member of the NWTraders domain

Chapter 16 Logon Scripts 361
1.	 Open Notepad or the script editor of your choice.

2.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch16\StepByStep\AddGroup-
ToLogonScriptStarter.vbs and save it as YourNameAddGroupToLogonScript.vbs.

3.	 Look over the script and add comments to each declared variable.

4.	 With the constants, declare a new constant called Production. Set it equal to cn=produc­
tiongroup. The completed constant section will look like the following:

Const HR = "cn=hrgroup"

Const MARKETING = "cn=marketinggroup"

Const SALES = "cn=salesgroup"

Const PRODUCTION = "cn=productiongroup"

5.	 Add a new case d to the Select Case statement. This new case is equal to finding the value
assigned to the constant Production in the string assigned to strGroups. If the case is met,
the script should jump to a subroutine called ProductionSub. The new Select Case state­
ment looks like the following:

Select Case GroupMember

Case a = InStr(strGroups, HR)

HRsub

Case b = InStr(strGroups, SALES)

SalesSub

Case c = InStr(strGroups, MARKETING)

MarketingSub

Case d = InStr (strGroups, PRODUCTION)

ProductionSub

End Select

6.	 At the bottom of the various subroutines, add a new subroutine called ProductionSub.
End the subroutine with the End Sub command. It will look like the following:

Sub ProductionSub

End Sub

7.	 For the first line of the ProductionSub subroutine, use WScript.Echo to inform the user
that she is in the Production subroutine. Your line of text could look like the following:

WScript.Echo("made it to production")

8.	 Use the MapNetworkDrive method of the WshNetwork object to map the drive letter
"P:" to the production share on the London server. This line of code will look like the
following:

wshNet.MapNetworkDrive "P:","\\london\Production\"

9.	 Use the AddWindowsPrinterConnection method of WshNetwork to add a connection to
the production printer that is set up on the London server. This line of code will look
like the following:

wshNet.AddWindowsPrinterConnection "\\london\ProductionPrinter"

362 Part III Advanced Windows Administration
10.	 Set the new production printer to be the default printer for members of the production
group. To do this, use the SetDefaultPrinter command of the WshNetwork object. This
line of code will look like the following:

wshNet.SetDefaultPrinter "\\london\ProductionPrinter"

11.	 Save and test the script by logging into the domain as one of your test users from a
remote machine. If there are problems with the script, compare it with \My Docu­
ments\Microsoft Press\VBScriptSBS\ch16\AddGroupToLogonScript.vbs.

One Step Further: Adding Logging to a Logon Script
In this section, you add logging to the AddGroupToLogonScript.

1.	 Open up the \My Documents\Microsoft Press\VBScriptSBS\ch16\OneStepFur­
ther\LoggedLogonScriptStarter.vbs script in Notepad or your favorite script editor and
save the file as YourNameLoggedLogonScript.vbs.

2.	 Copy the declared variables from the CreateLogFile.vbs file in the One Step Further
folder and paste them into the Header information section of your script. The new
Header information section of the script looks like the following:

Option Explicit

Dim fServer

Dim home

Dim wshNet

Dim ADSysInfo

Dim CurrentUser

Dim strGroups

Dim GroupMember

Dim objFSO 'holds connection to file system object

Dim objFile 'holds hook to the file to be used

Dim message 'holds message to be written to file

Dim objData1 'holds data from source used to write to file

Dim objData2 'holds data from source used to write to file

Dim LogFolder

Dim LogFile

3.	 Copy the entire Reference information section of the CreateLogFile.vbs file, including all
the constants and variable assignments. Paste this under the constants in your script.
The completed section looks like this:

Const HR = "cn=hrgroup"

Const MARKETING = "cn=marketinggroup"

Const SALES = "cn=salesgroup"

Const PRODUCTION = "cn=productiongroup"

Const ForWriting = 2

Const ForAppending = 8

LogFolder = "C:\fso"

LogFile = "C:\fso\logFile.txt"

Set objFSO = CreateObject("Scripting.FileSystemObject")

message="Reading computer info " & Now

Chapter 16 Logon Scripts 363
objData1 = objRecordSet.Fields("name")

objData2 = objRecordSet.Fields("distinguishedName")

4.	 Change the message text so that it reads “Processing Logon Script”.

5.	 Cut the objData1 and objData2 variables and paste them under the strGroups = LCase
line. This section of the script now looks like the following:

Set ADSysInfo = CreateObject("ADSystemInfo")

Set CurrentUser = GetObject("LDAP://" & ADSysInfo.UserName)

strGroups = LCase(Join(CurrentUser.MemberOf))

objData1 = objRecordSet.Fields("name")

objData2 = objRecordSet.Fields("distinguishedName")

wshNet.MapNetworkDrive "h:", fServer & "\Users\" & wshNet.UserName

WScript.Echo(wshNet.Username & " " & strgroups)

6.	 Assign values to objData1 and objData2. Make objData1 equal to ADSysInfo.UserName
and objData2 equal to strGroups. The two modified objData lines now look like the fol­
lowing:

objData1 = ADSysInfo.UserName

objData2 = strGroups

7.	 At the bottom of the subroutines in your script, create a new empty subroutine called
LoggingSub.

8.	 Inside the empty LoggingSub subroutine, paste the entire If…Then…End If section from
the CreateLogFile.vbs file. The completed LoggingSub subroutine now looks like the fol­
lowing:

Sub LoggingSub

If objFSO.FolderExists(LogFolder) Then

If objFSO.FileExists(LogFile) Then

Set objFile = objFSO.OpenTextFile(LogFile, ForAppending)

objFile.WriteBlankLines(1)

objFile.WriteLine message

objFile.WriteLine objData1

objFile.WriteLine objData2

objFile.Close

Else

Set objFile = objFSO.CreateTextFile(LogFile)

objFile.Close

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

objFile.WriteLine message

objFile.WriteLine objData1

objFile.WriteLine objData2

objFile.Close

End If

Else

Set objFolder = objFSO.CreateFolder(LogFolder)

Set objFile = objFSO.CreateTextFile(LogFile)

objFile.Close

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

objfile.WriteLine message

objFile.WriteLine objData1

364 Part III Advanced Windows Administration
objFile.WriteLine objData2

objFile.Close

End If

End Sub

9. Save your work.

10.	 In the HRSub subroutine, add a command to go to the LoggingSub subroutine after the
setDefaultPrinter command. The new HRSub subroutine now looks like the following:

Sub HRsub

WScript.Echo("made it to HR")

wshNet.MapNetworkDrive "g:","\\london\Hr\"

wshNet.AddWindowsPrinterConnection "\\london\HrPrinter"

wshNet.SetDefaultPrinter "\\london\HrPrinter"

LoggingSub

End Sub

11.	 Add the LoggingSub command to the end of the salesSub, marketingSub, and production-
Sub subroutines as well. The completed subroutines look like the following:

Sub SalesSub

WScript.Echo("made it to sales")

wshNet.MapNetworkDrive "s:", "\\london\Sales"

wshNet.AddWindowsPrinterConnection "\\london\SalesPrinter"

wshNet.SetDefaultPrinter "\\london\SalesPrinter"

Loggingsub

End Sub

Sub MarketingSub

WScript.Echo("made it to marketing")

wshNet.MapNetworkDrive "m:","\\london\Marketing\"

wshNet.AddWindowsPrinterConnection "\\london\MarketingPrinter"

wshNet.SetDefaultPrinter "\\london\MarketingPrinter"

Loggingsub

End Sub

Sub ProductionSub

WScript.Echo("made it to production")

wshNet.MapNetworkDrive "p:","\\london\Production\"

wshNet.AddWindowsPrinterConnection "\\london\ProductionPrinter"

wshNet.SetDefaultPrinter "\\london\ProductionPrinter"

Loggingsub

End Sub

12.	 Save your work and test your script by logging on to the test domain from a remote
machine. If you have problems with your script, compare it to \My Documents
\Microsoft Press\VBScriptSBS\ch16\OneStepFurther\LoggedLogonScript
Solution.vbs.

Chapter 16 Logon Scripts 365
Chapter 16 Quick Reference

To Do This

Obtain user and computer information that returns
the distinguished user name, which can then bind
to Active Directory and perform queries

Use ADSysInfo as opposed to WshNetwork

Put elements of an array together into a single
string

Use the Join function

Map to network shares and network printers and
remove network shares and network printers

Use WshNetwork

Refresh the local copy of the Active Directory
schema on a computer

Use RefreshSchemaCache

Chapter 17

Working with the Registry

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from earlier chapters:

■ Creating an instance of the FileSystemObject class

■ Creating a connection into Microsoft Windows Management Instrumentation (WMI)

■ Implementing the For…Next statement

■ Implementing the Select Case statement

After completing this chapter, you will be able to:

■ Implement the WshShell class

■ Script Reg.exe

■ Work with the WMI StdRegProv class

■ Work with the WshController object

First You Back Up
In this section, you will use the Reg.exe program to back up the registry. Backing up is an
important step, because you can make changes to the registry that would preclude Microsoft
Windows Server 2003 from even loading. So before you ever make any change to the registry,
you must have a backup.

Note Don’t be scared of working with the registry out of fear of “hosing” your machine. If
you do not have a backup of the registry, and you suspect a registry change caused a problem,
try booting your server and selecting “last known good” from the Startup menu. If this does
not work, try booting into the recovery console off of the Microsoft Windows Server 2003 CD­
ROM and using the command-line registry editor to undo the changes you previously made.

Numerous utilities can back up the registry; backing up using a script is convenient as well. By
using the Reg.exe support tool via Microsoft Visual Basic, Scripting Edition (VBScript), you
can perform the following operations:

■ Back up a registry key prior to making modifications

367

368 Part III Advanced Windows Administration
■ Back up a registry hive as part of maintenance

■ Import a registry key as part of maintenance

■ Import a registry key to restore a previous configuration

Just the Steps To back up the registry using the Reg.exe command

1. Create an instance of the WshShell class.

2. Use the Exec method of WshShell to execute the Reg.exe command.

3. Use the Reg.exe Save command.

4. Specify the registry key to save and the file to save it into.

Creating the WshShell Object
To use the Reg.exe tool to back up the registry, it is necessary to create an instance of the
WshShell class. This enables you to launch programs that are not part of Windows Scripting
Host. The following program, RegBack.vbs, illustrates using the WshShell object.

RegBack.vbs
Option Explicit

Dim objShell

WScript.Echo("beginning " & Now)

Set objShell = CreateObject("WScript.Shell")

objShell.Exec "%comspec% /k reg.exe EXPORT HKLM c:\hklm.reg"

WScript.Echo("completed " & Now)

As you can see in RegBack.vbs, you declare a variable called objShell and use it to hold the
WshShell object. After you have this object, you use the Exec method to launch a command-
line interpreter with the /k option.

Note The /k when used with the Cmd.exe program means to leave the command window
open so that you can examine anything written to the window by using the program you are
executing. However, it seems the behavior of /k and /c (which means to close the command
window after the script is finished executing) is largely dependant upon the command being
executed, and it therefore could seem to be erratic and unpredictable. As always, if something
is important to you, test it in a lab.

Setting the comspec Variable

The way that you obtain the command interpreter in RegBack.vbs is by using a well-known
system variable called %comspec%. If you are in doubt as to the value of %comspec% on your
computer, open a system prompt and type the following:

Echo %comspec%

Chapter 17 Working with the Registry 369
If you are running on a Windows Server 2003, Windows 2000, or Windows XP machine, the
value returned is C:\WINDOWS\system32\cmd.exe.

Defining the Command

When you use the Exec method of WshShell, the command to be executed is placed inside the
quotation marks. Because Reg.exe is a command-line program in the preceding code, there
really was no need to include %comspec%. Our command line could have simply been the
following:

objShell.Exec "reg.exe EXPORT HKLM c:\hklm.reg"

If, on the other hand, you need to use a command line for a command that is internal to the
command processor (cmd.exe or command.com), such as the dir command, you need to
launch a command shell interpreter, either by using the %comspec% system variable or by
using Cmd.exe, as illustrated in the CmdDir.vbs script, which follows. If you run the Cmd-
Dir.vbs script, keep in mind it could take a minute or two before it returns any information.
The CmdDir.vbs script will find all files that end with the extension of .dat. Most likely, it will
fine ntuser.dat, which is the current user profile setting. The issue of when to supply a com­
mand processor name and when not to can at times be a bit confusing.

CmdDir.vbs
Option Explicit

Dim objShell

Dim objExec

Dim strLine

Dim dirTxt

Dim dirFile

dirFile = "ntuser.dat"

WScript.Echo("beginning " & Now)

Set objShell = WScript.CreateObject("WScript.Shell")

Set objExec = objShell.Exec("%comspec% /c dir /aH c:*.dat /s")

Do Until objExec.StdOut.AtEndOfStream

strLine = objExec.StdOut.ReadLine()

dirTxt = Instr(strLine,dirFile)

If dirTxt <> 0 Then

WScript.Echo strLine

End If

Loop

WScript.Echo("all done " & Now)

Tip With the WshShell Exec method, everything inside the outer quotation marks is exe­
cuted. One quick way to make sure that you are getting the results you want and that the code
is running properly is to paste your executable code into a Start\Run dialog box. This approach
will not work, however, if you are using embedded quotes in strings. In this case, it is better to
use WScript.Echo to echo out the value of your variable, enabling you to ensure you are send­
ing the correct commands to VBScript.

370 Part III Advanced Windows Administration
Connecting to the Registry
To work with the registry, you need to connect to it first. You can use the WMI StdRegProv class
to make a connection and to read or write information into it. Although reading from the reg­
istry is a safe process, writing to the registry could have disastrous consequences if you don’t
take normal safety precautions such as making a backup of the key you intend to change and
testing the script in a lab on machines that would be easily recoverable.

At times, just being able to read a listing of keys is sufficient for your needs. For instance, when
the hotfix installer is run, it creates an entry under HKLM\SOFTWARE \Microsoft\Windows
NT\CurrentVersion\HotFix. Realizing this, if you read this key, you can see what hotfixes
have been applied to a particular machine. The following script, ReadHotFixes.vbs, does this
very thing. By using the EnumKey method of the WMI StdRegProv class, you can rather easily
create a listing of subkeys.

ReadHotFixes.vbs
Option Explicit

On Error Resume Next

Dim strKeyPath

Dim strComputer

Dim objReg

Dim subKey

Dim arrSubKeys

Const HKCR = &H80000000 'HKEY_CLASSES_ROOT

Const HKCU = &H80000001 'HKEY_CURRENT_USER

Const HKLM = &H80000002 'HKEY_LOCAL_MACHINE

Const HKU = &H80000003 'HKEY_USERS

Const HKCC = &H80000005 'HKEY_CURRENT_CONFIG

strKeyPath = "SOFTWARE\Microsoft\Windows NT" _

& "\CurrentVersion\HotFix"

strComputer = "."

Set objReg=GetObject("winmgmts:\\" &_

strComputer & "\root\default:StdRegProv")

objReg.EnumKey HKLM, strKeyPath, arrSubKeys

WScript.Echo("Keys under " & strKeyPath)

For Each subKey In arrSubKeys

WScript.Echo vbTab & subKey

Next

Header Information

The Header information section of ReadHotFixes.vbs consists of the Option Explicit and On
Error Resume Next commands, as well as the declarations for five variables. The five variables
are described in Table 17-1.

Chapter 17 Working with the Registry 371
Table 17-1 Variables Used in ReadHotFixes.vbs

Variable Use

strKeyPath The main registry that defines the entry point for the script

strComputer Holds the name of the computer that is targeted by WMI

objReg Holds the SWbemObjectEx object that comes back from the WMI
StdRegProv class

subKey Holds the name of the registry key to be enumerated

arrSubKeys Holds an array of registry keys found under the subKey

Reference Information

The Reference information section of the script is used to define constants and variables used
in the operation of the script. Several tree values are defined in winreg.h that you can use to
define constants and to shorten the length of your scripts. The default tree is
HKEY_LOCAL_MACHINE, so in reality, specifying the tree is unnecessary. However, for clar­
ity, and to ensure you hit the correct portion of the registry, I do not advocate relying on the
default registry tree. All the hexadecimal (hex) numbers that represent the registry trees are
listed in the Reference information section of this script. I normally include them in all regis­
try scripts so that I don’t have to look them up later. They don’t take up too much space, and
you can use them to form the basis of a nice registry script template.

The variable strKeyPath contains the registry key you want to look at. In this instance, because
you’re using the EnumKey method, you’ll get back only a listing of key names that reside
below strKeyPath. This is a useful method to use when you don’t know what you’ll find below
a particular registry key.

You make your connection to the standard registry provider by using GetObject to make a con­
nection into winmgmts. By default, StdRegProv resides in the root\default namespace—it is
important to note, however, that software makers can compile the Regevent.mof file used to
define the StdRegProv class into a different namespace for use in their applications. If you’re
working with such an application, you should connect to a different namespace.

Const HKCR = &H80000000 'HKEY_CLASSES_ROOT

Const HKCU = &H80000001 'HKEY_CURRENT_USER

Const HKLM = &H80000002 'HKEY_LOCAL_MACHINE

Const HKU = &H80000003 'HKEY_USERS

Const HKCC = &H80000005 'HKEY_CURRENT_CONFIG

strKeyPath = "SOFTWARE\Microsoft\Windows NT" _

& "\CurrentVersion\HotFix"

strComputer = "."

Set objReg=GetObject("winmgmts:\\" &_

strComputer & "\root\default:StdRegProv")

372 Part III Advanced Windows Administration
Worker and Output Information

The Worker and Output information section of the script is where you use the SWbem
ServicesEx object provided by StdRegProv to perform some work. In the ReadHotFixes.vbs file,
you use the EnumKey method of the StdRegProv WMI class to read a listing of subkeys.
Because the hotfix installer documents hotfixes under the hotfix registry key, this is a useful
application of the EnumKey method. Normally, however, you would use the EnumKey method
to find out what subkeys existed prior to performing some other action on the registry. For
instance, you could use EnumKey to find out whether a subkey existed, which in turn would
enable you to determine whether a particular application had been installed on a computer. It
would also be useful in finding certain types of viruses.

The objReg.EnumKey command uses the HKLM constant you defined in the Reference infor­
mation section of the script as well as the strKeyPath variable. The information is written to a
variable called arrSubKeys.

The subkeys are stored in an array, so you use a For Each…Next construction to iterate through
each element in the array. You assign each new element to a variable called subKey. You use
WScript.Echo to write the information, and you use the function vbTab to indent the results
under the heading that was echoed out before entering the For Each…Next loop. The Worker
and Output section of this script is listed below:

objReg.EnumKey HKLM, strKeyPath, arrSubKeys

WScript.Echo("Keys under " & strKeyPath)

For Each subKey In arrSubKeys

WScript.Echo vbTab & subKey

Next

Unleashing the Power of the StdRegProv Class
The importance of the StdRegProv class is the power it brings to a script. In Chapter 1, “Start­
ing from Scratch,” our tutorial script illustrated using RegRead. You could follow the same
methodology and use the RegWrite and RegDelete methods of WshShell, but there are limita­
tions to using WshShell to work with the registry: You cannot work remotely, and there is no
enumeration. However, all problems are resolved by using StdRegProv. It has 16 methods
defined. These methods and a description of what they can do are listed in Table 17-2.

Table 17-2 StdRegProv Methods

Method Description

CheckAccess Verifies that the user has the specified access permissions

CreateKey Creates a subkey

DeleteKey Deletes a subkey

DeleteValue Deletes a named value

EnumKey Enumerates one or more subkeys

Chapter 17 Working with the Registry 373
Table 17-2 StdRegProv Methods

Method Description

EnumValues Enumerates the named values of a key

GetBinaryValue Gets the binary data value of a named value

GetDWORDValue Gets the DWORD data value of a named value

GetExpandedStringValue Gets the expanded string data value of a named value

GetMultiStringValue Gets the multiple string data values of a named value

GetStringValue Gets the string data value of a named value

SetBinaryValue Sets the binary data value of a named value

SetDWORDValue Sets the DWORD data value of a named value

SetExpandedStringValue Sets the expanded string data value of a named value

SetMultiStringValue Sets the multiple string values of a named value

SetStringValue Sets the string value of a named value

One useful task you can perform as a network administrator is to create a key in the registry
that you use to keep track of certain machines. This is similar to a trick I used to use with the
Microsoft Systems Management Server product, where I placed a certain text file in the root
drive of the workstation and used the presence of the file in creating ad hoc Systems Manage­
ment Server (SMS) collections.

Just the Steps To create a registry key

1. Create a constant for HKLM and assign it the value of &H80000002.

2. Define variables to hold the registry path you want to create.

3. Use GetObject to create an instance of the WMI StdRegProvider class.

4. Use the CreateKey method and feed it the HKLM constant and the registry path variable
defined earlier.

Creating Registry Keys
To create keys and subkeys in the registry, you use the CreateKey method, as illustrated in the
CreateRegKey.vbs script:

CreateRegKey.vbs
Option Explicit

On Error Resume Next

Dim strKeyPath 'the portion of registry to read

Dim strComputer 'the target computer

Dim objReg 'holds connection to registry provider

Dim subKey 'used to enumerate throught the array

Dim arrSubKeys 'holds the sub keys

Dim ParentKey

Const HKCR = &H80000000 'HKEY_CLASSES_ROOT

374 Part III Advanced Windows Administration
Const HKCU = &H80000001 'HKEY_CURRENT_USER

Const HKLM = &H80000002 'HKEY_LOCAL_MACHINE

Const HKU = &H80000003 'HKEY_USERS

Const HKCC = &H80000005 'HKEY_CURRENT_CONFIG

ParentKey = "SOFTWARE\EdWilson"

strKeyPath = "SOFTWARE\EdWilson\VBScriptBook"

strComputer = "."

Set objReg=GetObject("winmgmts:\\" & _

strComputer & "\root\default:StdRegProv")

objReg.CreateKey HKLM, strKeyPath

WScript.Echo("Created key :" & strKeyPath)

WScript.Echo("New subkey under : " & ParentKey)

objReg.EnumKey HKLM, ParentKey, arrSubKeys

For Each subKey In arrSubKeys

WScript.Echo vbTab & subKey

Next

Header Information

The Header information section is similar to that of ReadHotFixes.vbs. The only new variable
is ParentKey, which is used to hold the path to the parent key that gets created.

Reference Information

The Reference information section is where you assign values to the variables defined in the
Header information section. You assign a value to ParentKey of SOFTWARE\ EdWilson. You
assign the value of SOFTWARE\EdWilson\VBScriptBook to strKeyPath. To create the registry
key and subkey, you need only the strKeyPath variable. However, because you intend to use
EnumKey to verify that you successfully created the new key and subkey, you defined Parent-
Key to simplify the use of EnumKey. The remaining items in the Reference information section
of the script are the same as in the previous script. The beauty of the StdRegProv class is how
similarly you use it through all the different methods. The Reference section of the script is
seen below.

Const HKCR = &H80000000 'HKEY_CLASSES_ROOT

Const HKCU = &H80000001 'HKEY_CURRENT_USER

Const HKLM = &H80000002 'HKEY_LOCAL_MACHINE

Const HKU = &H80000003 'HKEY_USERS

Const HKCC = &H80000005 'HKEY_CURRENT_CONFIG

ParentKey = "SOFTWARE\EdWilson"

strKeyPath = "SOFTWARE\EdWilson\VBScriptBook"

strComputer = "."

Chapter 17 Working with the Registry 375
Set objReg=GetObject("winmgmts:\\" &_

strComputer & "\root\default:StdRegProv")

Worker and Output Information

In the Worker and Output information section of the script, you create the key and subkey
and then use EnumKey to verify the existence of the new key. The only difference between
using CreateKey and EnumKey is that CreateKey needs only two arguments: the registry tree
constant and the key path to create. EnumKey, on the other hand, uses three arguments: the
registry tree constant, the key path to enumerate, and the variable to hold the output. The
Worker and Output section of the script is seen below.

objReg.CreateKey HKLM, strKeyPath

WScript.Echo("Created key :" & strKeyPath)

WScript.Echo("New subkey under : " & ParentKey)

objReg.EnumKey HKLM, ParentKey, arrSubKeys

For Each subKey In arrSubKeys

WScript.Echo vbTab & subKey

Next

Writing to the Registry
I don’t know about you, but I’ve always thought that writing to the registry would be really dif­
ficult. However, using the appropriate method of the StdRegProv WMI class makes it as easy as
eating pineapple on the beach in Kauai, Hawaii—once you sink your teeth into it, it’s sweet. In
the script WriteToRegKey.vbs, you use the SetStringValue method to write information into a
key called bookReviews that is stored under the SOFTWARE \EdWilson\VBScriptBook sub-
key. When you execute the script, the key bookReviews does not exist. One nice aspect of Set-
StringValue is that it will create a key and set the value in one operation. Once you write your
data, which is contained in a variable called strData, to the key, you use GetStringValue to read
the information you just wrote. The syntax of SetStringValue needs several arguments: the reg­
istry tree (in this case, HKLM); the registry key path (held in strKeyPath); the registry key to
modify (held in strNamedValue); and the data to write (held in strData).

To verify that your changes were made as expected, use GetStringValue to retrieve the data you
just wrote to the registry. GetStringValue works much like SetStringValue except that the last
argument is the variable name you want to use to hold the data returned from the registry.
With SetStringValue, the fourth argument is the variable that holds the data you want to write
to the registry. With GetStringValue, the fourth argument is the variable that will hold the data
once you read it from the registry. Everything else about the two commands is the same.

WriteToRegKey.vbs
Option Explicit

On Error Resume Next

Dim strKeyPath 'the portion of registry

376 Part III Advanced Windows Administration
Dim strComputer 'the target computer

Dim objReg 'holds connection to registry provider

Dim subKey 'used to enumerate thought the array

Dim arrSubKeys 'holds the subkeys

Dim ParentKey

Dim strNamedValue

Dim strData

Dim strReturnValue

Const HKCR = &H80000000 'HKEY_CLASSES_ROOT

Const HKCU = &H80000001 'HKEY_CURRENT_USER

Const HKLM = &H80000002 'HKEY_LOCAL_MACHINE

Const HKU = &H80000003 'HKEY_USERS

Const HKCC = &H80000005 'HKEY_CURRENT_CONFIG

ParentKey = "SOFTWARE\EdWilson"

strKeyPath = "SOFTWARE\EdWilson\VBScriptBook"

strNamedvalue = "book reviews"

strData = "Awesome"

strComputer = "."

Set objReg = GetObject("winmgmts:\\" & _

strComputer & "\root\default:StdRegProv")

objReg.SetStringValue HKLM, strKeyPath, strNamedValue, strData

WScript.Echo("value set")

objReg.GetStringValue HKLM, strKeyPath, strNamedValue, strReturnValue

WScript.Echo strNamedValue & " contains " & strReturnValue

Deleting Registry Information
If you need to delete a registry key, perhaps as a result of cleaning up after a virus, uninstalling
software, or cleaning up after you’re finished with the keys you created, you can use the
DeleteKey method of StdRegProv. The next script, DeleteRegKey.vbs, illustrates how easy this is
to do. Additional cautions about having a good backup and testing on other machines are
applicable here! Be careful!

Though much of the script is similar to other registry provider scripts, a couple of items are
important to note here. Notice in the Worker information section of the script that you have to
delete the subkey before you can delete the parent key. The DeleteKey method deletes only
keys. If you have a large section of the registry you need to lobotomize, you could use the
EnumKey method and, as you iterate through the array, you could use DeleteKey.

DeleteRegKey.vbs
Option Explicit

On Error Resume Next

Dim strKeyPath 'the portion of registry to read

Chapter 17 Working with the Registry 377
Dim strComputer 'the target computer

Dim objReg 'holds connection to registry provider

Dim subKey 'used to enumerate throught the array

Dim arrSubKeys 'holds the subkeys

Dim ParentKey

Const HKCR = &H80000000 'HKEY_CLASSES_ROOT

Const HKCU = &H80000001 'HKEY_CURRENT_USER

Const HKLM = &H80000002 'HKEY_LOCAL_MACHINE

Const HKU = &H80000003 'HKEY_USERS

Const HKCC = &H80000005 'HKEY_CURRENT_CONFIG

ParentKey = "SOFTWARE\EdWilson"

strKeyPath = "SOFTWARE\EdWilson\VbscriptBook"

strComputer = "."

Set objReg=GetObject("winmgmts:\\" & _

strComputer & "\root\default:StdRegProv")

objReg.DeleteKey HKLM, strKeyPath

objReg.DeleteKey HKLM, ParentKey

If Err.Number = 0 Then

WScript.Echo("Deleted key:" & strKeyPath)

WScript.Echo("Deleted subKey: " & ParentKey)

Else

WScript.Echo("Error number " & Err.Number & "occurred")

End If

Reading the Registry Using WMI Step-by-Step Exercises
In this section, let’s practice reading the registry by using the WMI StdRegProv class.

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\BlankTemplate.vbs in
Microsoft Notepad or your favorite script editor. Save the script as Your-
NameReadTheRegistry.vbs.

2.	 Add Option Explicit as the first line of your script.

3.	 Declare the following variables: strKeyPath, strComputer, objReg, subKey, and arrSubKeys.
The Header information section of your script will look like the following:

Option Explicit

Dim strKeyPath

Dim strComputer

Dim objReg

Dim subKey

Dim arrSubKeys

4.	 Define a constant to be used for HKLM. Its hex value is &H80000002. Your code for this
looks like the following:

Const HKLM = &H80000002

378 Part III Advanced Windows Administration
5.	 Assign the Software\Microsoft path to the strKeyPath variable. It will look like the
following:

strKeyPath = "SOFTWARE\Microsoft"

6.	 Assign the value of "." to the variable strComputer.

7.	 Use the objReg variable to hold the SWbemServicesEx object. Connect into the
root\default:stdRegProv namespace on the local computer. Your code to do this looks like
the following:

Set objReg=GetObject("winmgmts:\\" &_

strComputer & "\root\default:StdRegProv")

8.	 Now use the EnumKey method to read the subkeys found under the Software\Microsoft
key. The Software\Microsoft key is located in the HKLM tree. Feed the results out into a
variable called arrSubKeys. The code for this looks like the following:

objReg.EnumKey HKLM, strKeyPath, arrSubKeys

9.	 Use WScript.Echo to echo out strKeyPath. This will be a header for the list of software
contained in the Software\Microsoft key. You can use something like this:

WScript.Echo("Keys under " & strKeyPath)

10.	 Use a For Each…Next loop to iterate through the subkeys that are contained in the arr-
SubKeys variable. Use WScript.Echo to echo out the subkeys. Use the subKey variable as
your placeholder. Your code will look like the following:

For Each subKey In arrSubKeys

WScript.Echo vbTab & subKey

Next

11. Save and run the program under CScript.exe to avoid a plethora of dialog boxes.

One Step Further: Creating Registry Keys
In this section, you create a couple of registry keys that can be used to keep track of a software
inventory of the workstation.

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\BlankTemplate.vbs in
Notepad or your favorite script editor.

2.	 On the first line, type Option Explicit. Save your script as

YourNameCreateRegistryKeys.vbs.

3.	 Declare the following variables: strKeyPath, strComputer, objReg, subKey, arrSubKeys, and
ParentKey. You code will look like the following:

Option Explicit

Dim strKeyPath

Dim strComputer

Dim objReg

Chapter 17 Working with the Registry 379
Dim subKey

Dim arrSubKeys

Dim ParentKey

4.	 Define the constant for HKLM and set it equal to &H80000002. It will look like the

following:

Const HKLM = &H80000002 'HKEY_LOCAL_MACHINE

5.	 Assign the value of "SOFTWARE\INVENTORY" to the ParentKey variable. It will look like
the following:

ParentKey = "SOFTWARE\INVENTORY"

6.	 Assign the value of "SOFTWARE\INVENTORY\Conducted" to the strKeyPath variable. It
looks like the following:

strKeyPath = "SOFTWARE\INVENTORY\Conducted"

7.	 Assign the value of "." to the strComputer variable. It looks like the following:

strComputer = "."

8.	 Use the objReg variable to hold the SWbemServicesEx object. Connect into the
root\default:stdRegProv namespace on the local computer. Your code to do this looks like
the following:

Set objReg=GetObject("winmgmts:\\" & _

strComputer & "\root\default:StdRegProv")

9.	 Use the createKey method of objReg to create the new registry keys. The line will need
both the HKLM constant and the strKeyPath for arguments. It will look like the
following:

objReg.CreateKey HKLM, strKeyPath

10.	 Use WScript.Echo to provide feedback to the user that the key and the subkey were
created. Your code could look like the following:

WScript.Echo("Created key :" & strKeyPath)

WScript.Echo("New subkey under : " & ParentKey)

11.	 Use EnumKey to verify the existence of the newly created registry keys. EnumKey will
need HKLM, ParentKey, and arrSubKeys as arguments. Use a For Each…Next loop to walk
through the arrSubKeys variable. Echo out each subkey. Your code will look like the fol­
lowing:

objReg.EnumKey HKLM, ParentKey, arrSubKeys

For Each subKey In arrSubKeys

WScript.Echo vbTab & subKey

Next

12.	 Save and run the script.

380 Part III Advanced Windows Administration
Chapter 17 Quick Reference

To Do This

Run an external program in VBScript Use the Run method or the Exec method from
the WshShell object

Use WMI to work with the registry Use the StdRegProv WMI class

Write a string value to the registry using the Use the SetStringValue method
StdRegProv WMI class

Use the DeleteKey method of StdRegProv to Delete the subkeys first, then delete the
delete a key and several subkeys from the parent key
registry

Chapter 18

Working with Printers

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from earlier chapters:

■ Creating a connection into Microsoft Windows Management Instrumentation (WMI)

■ Creating an instance of the FileSystemObject class

■ Implementing the For…Next statement

■ Implementing the Select Case statement

After completing this chapter, you will be able to:

■ Work with the Win32_Printer WMI class

■ Convert status codes into readable text

■ Work with the Win32_PrintJob WMI class

Working with Win32_Printer
In this section, you are going to use the WMI Win32_Printer class. This particular WMI class
is large and robust, defining more than 80 properties and implementing 7 methods. Some of
its more useful properties are listed in Table 18-1.

Table 18-1 Useful Win32_Printer Properties

Property Description

Attributes Attributes of a Microsoft Windows printing device. Represented by a
combination of flags.

Availability Availability and status of the device. Return values are as follows:
2 = unknown, 3 = running or full power, 8 = offline.

AvailableJobSheets Array of all job sheets available on a printer. Also used to describe the
banner a printer might provide.

AveragePagesPerMinute Print rate of the printer.

CharSetsSupported	 Array of available character sets for output. Strings in this property are
defined in Request for Comments (RFC) 2046 (Multipurpose Internet
Mail Extensions [MIME] part 2) and in the Internet Assigned Numbers
Authority (IANA) character-set registry. Examples: utf-8, us-ascii, and
iso-8859-1.
381

382 Part III Advanced Windows Administration
Table 18-1 Useful Win32_Printer Properties

Property Description

Comment String that contains a comment for a print queue. Example:
color printer.

CurrentLanguage Printer language currently being used. Examples: 1 = other,
2 = unknown, 3 = PCL, 6 = PS.

Default Boolean. If true, the printer is the default printer on the computer.

DefaultCopies Number of copies that are produced for one job.

DetectedErrorState Printer error information. Examples: 1 = unknown, 2 = other,
3 = no error, 5 = no paper, 6 = low toner, 9 = jammed, 10 = offline.

Direct Boolean. If true, the print job is sent directly to the printer. If false, the
print job is spooled.

DoCompleteFirst Boolean. If true, the printer starts jobs that are finished spooling. If
false, the printer starts jobs in the order they are received.

DriverName String. Name of the Windows printer driver.

JobCountSinceLastReset Number of print jobs since the printer was last reset.

KeepPrintedJobs Boolean. If true, the print spooler does not delete completed jobs.

LastErrorCode Last error code that the logical device reports.

Local Boolean. If true, the printer is not attached to a network.

ServerName String. Name of the server that controls the printer.

Shared Boolean. If true, the printer is available as a shared network resource.

ShareName String. Share name of the print device.

Status String. Current status. Examples: ok, error, degraded, unknown, and
stopping.

workOffLine Boolean. If true, you can queue print jobs on the computer when the
printer is offline.

Just the Steps To use the Win32_Printer class to manage a printer

1. Create a variable to hold a WMI connection.

2. Use GetObject and the WMI moniker to make a WMI connection.

3. Assign the object that comes back from the WMI connection to the variable in step 1.

4. Use the ExecQuery method to query Win32_Printer.

5. Use For Each…Next to iterate through the printer’s collection.

Obtaining the Status of Printers
In your first printer management script, you’ll use the Win32_Printer WMI class to obtain
information about the status of printers defined on a computer. This particular script runs on
Windows Server 2003 and on Windows XP, so it can run on a server to obtain the status of all
the printers defined, or it can run as a diagnostic tool on a workstation. The
MonitorPrinterStatus.vbs script follows:

Chapter 18 Working with Printers 383
MonitorPrinterStatus.vbs
Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_Printer"

Set objWMIService = GetObject("winmgmts:\\" _

& strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Location: " & objItem.Location

WScript.Echo "Printer Status: " & funEvalStatus(objItem.PrinterStatus)

WScript.Echo "Server Name: " & objItem.ServerName

WScript.Echo "Share Name: " & objItem.ShareName

WScript.Echo

Next

Function funEvalStatus(intIN)

Select Case intIN

Case 1

funEvalStatus = "Other"

Case 2

funEvalStatus = "Unknown"

Case 3

funEvalStatus = "Idle"

Case 4

funEvalStatus = "Printing"

Case 5

funEvalStatus = "Warmup"

Case 6

funEvalStatus = "Stopped Printing"

Case 7

funEvalStatus = "Offline"

End Select

End Function

Header Information

The Header information section of the script does not perform any real magic. You begin with
Option Explicit so that you’re forced to keep track of your variables. Next you have On Error
Resume Next, and then you have six variables. A description of the variables appears in
Table 18-2.

384 Part III Advanced Windows Administration
Table 18-2 Variables for MonitorPrinterStatus.vbs

Variable Use

strComputer Holds the target computer

wmiNS Holds the WMI namespace that will be connected to

wmiQuery Holds the WMI query that will be executed

objWMIService Holds the connection to WMI

colItems Holds the collection that comes back as a result of the WMI query

objItem Placeholder that allows us to iterate through the collection of items that was
returned by the WMI query

Reference Information

The Reference information section of the script is used to assign values to some of the vari­
ables that were declared in the Header information section of the script. You use the period
inside a set of double quotation marks to represent the local machine and assign it to strCom­
puter. If you wanted to run the script against other computers, you could substitute their
names for the period. The root\cimv2 namespace is assigned to the variable wmiNS. You use
"Select * from Win32_Printer" to return everything from the Win32_Printer class. Though easy
to do, this is not the most efficient way to gather your information, which is somewhat of an
issue when working with Win32_Printer because it is a rather large class. Your reference to the
system’s WMI service is objWMIService. You use the winmgmts moniker to simplify the connec­
tion process. The last reference information that needs to be set is using the ExecQuery
method of objWMIService to execute the query represented by the variable wmiQuery. The Ref­
erence section is seen below.

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_Printer"

Set objWMIService = GetObject(“winmgmts:\\" _

& strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Worker Information

The Worker information section of the MonitorPrinterStatus.vbs script consists of a single
function called funEvalStatus. The funEvalStatus routine is used to translate the status code
that is returned by the PrinterStatus property into a more meaningful message. To do the
matching, you use a Select Case construction that looks for a match with one of the seven pos­
sible return status codes. The Worker section is seen below.

Function funEvalStatus(intIN)

Select Case intIN

Case 1

funEvalStatus = "Other"

Case 2

funEvalStatus = "Unknown"

Case 3

funEvalStatus = "Idle"

Chapter 18 Working with Printers 385
Case 4

funEvalStatus = "Printing"

Case 5

funEvalStatus = "Warmup"

Case 6

funEvalStatus = "Stopped Printing"

Case 7

funEvalStatus = "Offline"

End Select

End Function

Output Information

Once you work through matching the return status codes with a more meaningful status mes­
sage, it is time to echo out the information. You use a For Each…Next construction to iterate
through the collection of items that was returned by the WMI query. You use WScript.Echo to
echo out a few of the more than 80 properties available via the Win32_Printer class. Because
both the Name and the Location properties are simple string data, you can echo them out
directly. However, to properly interpret the printer status code, you need to enter the subEval-
Status subroutine. You come out of that subroutine with a meaningful status message, and so
you echo that out as well. Finally, you echo out the server name and the printer share name.

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Location: " & objItem.Location

WScript.Echo "Printer Status: " & funEvalStatus(objItem.PrinterStatus)

WScript.Echo "Server Name: " & objItem.ServerName

WScript.Echo "Share Name: " & objItem.ShareName

WScript.Echo

Next

Quick Check

Q. What WMI class provides more than 80 properties for managing printers?

A. The Win32_Printer class provides more than 80 properties for managing printers.

Q. What is needed to obtain meaningful information from the PrinterStatus property?

A. To obtain meaningful information from the PrinterStatus property, you must interpret the
status codes.

Q. When using the Win32_Printer class, how is the data returned?

A. When using the Win32_Printer class, the data is returned as a collection of printer objects.

Creating a Filtered Print Monitor

One cool thing you can do is filter out only the information you need prior to presenting it to
the screen. A Windows Server 2003 print server commonly hosts a couple of hundred print­
ers, so searching through all the print devices looking for one that is offline could take a long

386 Part III Advanced Windows Administration
time. By making just a couple of changes to the MonitorPrinterStatus.vbs script, you can allow
Microsoft Visual Basic, Scripting Edition (VBScript) to perform the weeding work for you.

Just the Steps To use a filter on the Win32_Printer class to manage a printer

1. Declare a variable to hold a connection into WMI.

2. Use GetObject and the WMI moniker to make a connection into WMI.

3. Assign the object that comes back from the WMI connection to the variable declared in
step 1.

4. Use the ExecQuery method with a Where clause to query Win32_Printer. The Where
clause should look for 1, 2, or 7 in the PrinterStatus property.

5. Use the Count property to determine the population of the collection of printers. If the
collection of printers is empty, echo a message to that effect.

6. If the collection of printers is not empty, use For Each…Next to iterate through the
collection.

The revised printer monitor script is called FilterPrinterStatus.vbs. Only a couple of changes
were made to affect filtering. The addition of the Where clause to the WMI query takes place in
the Reference information section. The use of If…Then…Else in conjunction with the Count
property takes place in the Output information section. The FilterPrinterStatus.vbs script
follows:

FilterPrinterStatus.vbs
Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_Printer" _

& " Where PrinterStatus = 1" _

& " or PrinterStatus = 2" _

& " or PrinterStatus = 7"

Set objWMIService = GetObject("winmgmts:\\" _

& strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

If colItems.count = 0 Then

WScript.Echo "All printers are fine"

Else

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Location: " & objItem.Location

Chapter 18 Working with Printers 387
WScript.Echo "Printer Status: " & funEvalStatus(objItem.printerStatus)

WScript.Echo "Server Name: " & objItem.ServerName

WScript.Echo "Share Name: " & objItem.ShareName

WScript.Echo

Next

End If

Function funEvalStatus(intIN)

Select Case intIN

Case 1

funEvalStatus = "Other"

Case 2

funEvalStatus = "Unknown"

Case 3

funEvalStatus = "Idle"

Case 4

funEvalStatus = "Printing"

Case 5

funEvalStatus = "Warmup"

Case 6

funEvalStatus = "Stopped Printing"

Case 7

funEvalStatus = "Offline"

End Select

End Function

Reference Information

The Reference information section is where you modify your WMI query. The only change is
adding a compound Where clause to the value you assigned to wmiQuery. You are interested in
only those printers that have a status of 1, 2, or 7. The Reference section of the script is seen
below.

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from Win32_Printer" _

& " Where PrinterStatus = 1" _

& " or PrinterStatus = 2" _

& " or PrinterStatus = 7"

Set objWMIService = GetObject("winmgmts:\\" _

& strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Output Information

If you tried to iterate through a collection that had no members, you would not receive a
meaningful message. To avoid this, you add an If…Then…Else construction around the Output
information section that appeared in the earlier script. If there are no printers with an error
condition, the Count property of colItems will be zero. You use WScript.Echo to send a message
to the console that all printers are fine. If, however, the count is not zero, you echo out the

388 Part III Advanced Windows Administration
information used in the MonitorPrinterStatus.vbs script. The revised section looks like the fol­
lowing code:

If colItems.count = 0 Then

WScript.Echo "All printers are fine"

Else

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Location: " & objItem.Location

WScript.Echo "Printer Status: " & funEvalStatus(objItem.printerStatus)

WScript.Echo "Server Name: " & objItem.ServerName

WScript.Echo "Share Name: " & objItem.ShareName

WScript.Echo

Next

End If

Quick Check

Q. What was required in the FilterPrinterStatus.vbs script to return only selected records
from the WMI query?

A. To return selected records, a Where clause was added to the WMI query.

Q. What is needed in the FilterPrinterStatus.vbs script to ensure you have printers in your
collection?

A. To ensure you have printers in your collection, you used the Count property of collected
items in the FilterPrinterStatus.vbs script.

Q. What does a PrinterStatus code of 7 mean?

A. A PrinterStatus code of 7 means the printer is offline.

Monitoring Print Queues
To understand your print environment, it is necessary to examine the way the queues on the
print servers are used. The MonitorPrintQueue.vbs script uses the Win32_PrintJob WMI class
to obtain useful information about the load placed on your print servers. Because Monitor-
PrintQueue.vbs is based on previous scripts, you will look only at the Worker and Output
information section of the script. You assign "Select * from Win32_PrintJob" to the wmiQuery
variable in the Reference section. That is the main change required in that section.

MonitorPrintQueue.vbs
Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

Dim intTotalJobs

Dim intTotalPages

Chapter 18 Working with Printers 389
Dim intMaxPrintJob

strComputer = '.'

wmiNS = '\root\cimv2'

wmiQuery = 'Select * from win32_PrintJob'

Set objWMIService = GetObject('winmgmts:\\' _

& strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

If colItems.count = 0 Then

WScript.Echo('There are no print jobs at this time')

Else

For Each objItem In colItems

intTotalJobs = intTotalJobs + 1

intTotalPages = intTotalPages + objItem.TotalPages

If objItem.TotalPages > intMaxPrintJob Then

intMaxPrintJob = objItem.TotalPages

End If

Next

WScript.Echo 'Total print jobs in queue: ' & intTotalJobs

WScript.Echo 'Total pages in queue: ' & intTotalPages

WScript.Echo 'Largest print job in queue: ' & intMaxPrintJob

End If

Worker and Output Information

To return meaningful information, you use the Count property of colItems just like you did in
the previous script. If there are print jobs in the collection, iterate through them by using the
For Each…Next construction. To get a count of the total number of print jobs in the queue, you
use a counter called intTotalJobs, which gets incremented each time you loop through the col­
lection of print jobs. For each print job in the collection, you get the TotalPages property and
add it to the intTotalPages variable. By keeping a running total of pages, once you iterate
through the collection, you will know the total pages left in the queue. To determine the larg­
est print job in the queue, you use the variable called intMaxPrintJob and evaluate the size of
each print job on the server. On each iteration through the collection of print jobs, we will list
the print job size. Each time a larger print job is found, its value will be stored in intMaxPrint-
Job. At the end of the iteration, the largest print job will be stored in intMaxPrintJob, the total
number of pages will be stored in the intTotalPages variable, and the total number of print jobs
will be stored in the intTotalJobs variable.

Monitoring Print Jobs Step-by-Step Exercises
In this section, you will practice monitoring print jobs by using the Win32_PrintJob WMI class.

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\BlankTemplate.vbs in
Microsoft Notepad or your favorite script editor.

2.	 On the first line, type Option Explicit.

3.	 On the next line, type On Error Resume Next and then comment it out, so you can see
the errors while working with the script.

390 Part III Advanced Windows Administration
4.	 Save your script as YourNameMonitorPrintJobs.vbs.

5.	 Declare the following variables: strComputer, wmiNS, wmiQuery, objWMIService, colItems,
and objItem. Your Header information section will look like the following:

Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

6.	 Assign the value "." to the variable strComputer, as seen below

strComputer = <;$QD>.<;$QD>

7.	 Assign the value "\root\cimv2" to the variable wmiNS, as seen below:

wmiNS = "\root\cimv2"

8.	 Assign the string "Select * from Win32_PrintJob" to the wmiQuery variable, as seen below:

wmiQuery = "Select * from win32_PrintJob"

9.	 Use objWMIService to hold the SWbemServices object that is returned by the GetObject
command when we connect to the root\cimv2 namespace on the local machine. Use the
winmgmts moniker to make the connection. Specify the target computer as strComputer.
Your code for this will look like the following:

Set objWMIService = GetObject("winmgmts:\\" _

& strComputer & wmiNS)

10.	 Set the variable colItems equal to the object that is returned from the ExecQuery method
of objWMIService when it executes the query contained in the variable wmiQuery. Your
code will look like the following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

11.	 Use the ColItems.Count property to ensure print jobs are in the collection. Implement
an If…Then…Else construction to handle this. If there are no print jobs, echo a message
to that effect. If there are print jobs, move into a For…Each loop. Your code for this part
looks like the following:

If colItems.Count = 0 Then

WScript.Echo("There are no print jobs at this time")

else

12.	 Use a For Each…Next construction to iterate through the print jobs contained in the
colItems collection. Use the variable objItem to hold each job as you walk through the col­
lection. Echo out the JobId, JobStatus, Owner, and TotalPages properties. Your code for
this looks like the following:

For Each objitem In colItems

WScript.Echo("Print job: " & objItem.JobId)

Chapter 18 Working with Printers 391
WScript.Echo("job status: " & objItem.JobStatus)

WScript.Echo("Owner: " & objItem.Owner)

WScript.Echo("Remaining pages: " & objItem.TotalPages)

Next

13.	 Close out the If…Then…Else construction by using End If.

14.	 Save your work and run the script under CScript. If it does not work as expected, com­
pare it with \My Documents\Microsoft Press\VBScriptSBS\ch18\StepByStep\Monitor-
PrintJobs.vbs.

One Step Further: Checking the Status of a Print Server
In this section, you will check the status of a print server, and if the server is not OK, you will
cancel all print jobs on the box. This script is based on the FilterPrinterStatus.vbs script, so
you use a starter file.

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\ch18\OneStepFurther\Filter-
PrinterStatus.vbs in Notepad or your favorite script editor. Save the script as Your
NameCheckServerStatusCancelPrintJobs.vbs.

2.	 Delete the entire subEvalstatus subroutine from the bottom of the script. This subroutine
looks like the following:

Sub subEvalStatus

Select Case objItem.PrinterStatus

Case 1

strStatus = "Other"

Case 2

strStatus = "Unknown"

Case 3

strStatus = "Idle"

Case 4

strStatus = "Printing"

Case 5

strStatus = "Warmup"

Case 6

strStatus = "Stopped Printing"

Case 7

strStatus = "Offline"

End Select

End sub

3.	 Locate the For Each…Next construction. Delete everything that is between the For Each
and the Next. The For Each…Next statement is seen below. You will need to remove all
the WScript.Echo commands and the subEvalStatus statement from the code below:

For Each objItem in colItems

WScript.Echo "Name: " & objItem.Name

WScript.Echo "Location: " & objItem.Location

subEvalStatus

WScript.Echo "Printer Status: " & strStatus

WScript.Echo "Server Name: " & objItem.ServerName

392 Part III Advanced Windows Administration
WScript.Echo "Share Name: " & objItem.ShareName

WScript.Echo

Next

4.	 Inside the For Each…Next construction, echo out the objItem.Name property with an
appropriate label. It will look like the following:

WScript.Echo "Name: " & objItem.Name

5.	 Under the WScript command, use the variable canStatus to hold the value contained
in the objItem.CancelAllJobs property. The CancelAllJobs method has a return value that
you want to capture with the canStatus variable. This line of code looks like the
following:

canStatus = objItem.cancelAllJobs

6.	 Use WScript.Echo to echo out the value of canStatus. The completed For Each…Next

construction now looks like the following:

For Each objItem In colItems

WScript.Echo "Name: " & objItem.Name

canStatus = objItem.CancelAllJobs

WScript.Echo(canStatus)

Next

7.	 Add the variable canStatus to the declarations section of the script.

8.	 Save and run the script. If it does not perform as expected, compare it to

\My Documents\Microsoft Press\VBScriptSBS\ch18\OneStepFurther\

CheckServerStatusCancelPrintJobs.vbs.

Chapter 18 Quick Reference

To Do This

Use WMI to find comprehensive information Use the WIN32_Printer class
about printers

Find information about print jobs on either a Use the WIN32_PrintJobs class
workstation or on a server

Retrieve the number of items in a collection Use the Count property of the SWbemObjectSet
returned by the ExecQuery method of the object
SWbemServices object

Reduce the number of records returned by a Use a Where clause with the query
WMI query

Part IV
Scripting Other Applications

In this part:

Chapter 19: Managing IIS 6.0 . 395

Chapter 20: Working with Exchange 2003 . 407

Chapter 21: Troubleshooting WMI Scripting . 419

Chapter 19

Managing IIS 6.0

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the fol­
lowing concepts from earlier chapters:

■ Connecting to Microsoft Windows Management Instrumentation (WMI)

■ Connecting to Microsoft Active Directory directory service

■ Implementing the For…Next statement

■ Implementing the Select Case statement

■ Using the ExecQuery method

After completing this chapter, you will be able to:

■ Connect to the MicrosoftIISv2 namespace

■ Use the Internet Information Server (IIS) WMI providers

■ Work with the IIS metabase

Locating the WMI classes for IIS 6.0
All classes of the IIS 6.0 WMI provider are contained in a namespace called MicrosoftIISv2.
This namespace is made up of five different classes discussed briefly in the next few sections.

CIM_ManagedSystemElement

The CIM_ManagedSystemElement class contains elements that relate to the IIS metabase
schema. An example of one of these classes is IISWebServer, which maps to an instance of an
IIS Web server. Another class is IISWebVirtualDir, which maps to an instance of a Web virtual
directory. The elements in CIM_ManagedSystemElement are read-only. To set these types of set­
tings, use the CIM_Setting class.

CIM_Setting

The elements in the CIM_Setting class map closely to the elements in the CIM_ManagedSystem
Element class. This means that the elements correspond to nodes of the IIS 6.0 metabase
schema. The CIM_Setting class contains methods that enable you to work with the properties
that match the read-only elements of the CIM_ManagedSystemElement class.
395

396 Part IV Scripting Other Applications
Tip The IIsWebServerSetting element in the CIM_Setting element class enables you to make
changes to your IIS Web server. To view data, you use the IIsWebServer element in the
CIM_ManagedSystemElement class. It is important to remember that both of these elements
refer to Web sites on your server. IIsWebServer is read-only, and IIsWebServerSetting enables
you to make changes.

IIsStructuredDataClass

The IIsStructuredDataClass class presents information that is also accessible via Active Direc­
tory Service Interfaces (ADSI). However, the IIsStructuredDataClass information is structured
in a way that is easier to work with than the ADSI data. For instance, the ServerBinding’s prop­
erty in ADSI is a string that consists of “IP:Port:Hostname”. If the parts are out of order or are
missing colons, an error occurs. By using IIsStructuredDataClass, you can take advantage of the
element class called ServerBinding, whose properties are easier to set.

CIM_Component

CIM_Component is an association class that maps each element in the CIM_ManagedSystem
Element class to other elements in the same class. It does this to mimic the way the data would
be accessed via ADSI.

CIM_ElementSetting

The CIM_ElementSetting class is also an association class. As such, it maps elements in the
CIM_ManagedSystemElement class to elements in the CIM_Setting class. The properties of the
elements contained in the CIM_ElementSetting class are simply references to the two associ­
ated elements.

Using MicrosoftIISv2

To use the MicrosoftIISv2 namespace, you need to understand the way the five classes repre­
sent the structure of the IIS 6.0 metabase schema. Instances of the elements in each of the
classes contain current information that is viewable via the IIS Manager or the Metabase Con­
figuration Editor.

On a default installation of IIS 6.0, the IIsWebVirtualDir element of the Cim_ManagedSystem
Element class contains three instances of virtual directories: W3SVC/1/Root, W3SVC/1/Root
/Scripts, and W3SVC/1/Root/Printers. These three virtual directories are also represented in
the IIsWebVirtualDirSetting element of the CIM_Setting class. The only difference between the
two is that you make changes to the virtual directories using only IIsWebVirtualDirSetting.

Chapter 19 Managing IIS 6.0 397
Just the Steps To connect to the MicrosoftIISv2 namespace

1. Define a variable to hold the object that comes back from the connection.

2. Specify the namespace as /root/MicrosoftIISv2.

3. Set your variable equal to the object that comes back from using the GetObject
command to connect through winmgmts to the root/MicrosoftIISv2 namespace on
your machine.

4. Use the ExecQuery method to obtain information.

Making the Connection
To get an idea of the types of data accessible from the CIM_Setting element class, you can use
the CIMSettingClass.vbs script. This script also illustrates connecting to the MicrosoftIISv2
namespace and using WMI to query for IIS 6.0 configuration information.

Note To run the scripts listed in this chapter, you will need to have IIS installed on your test
server. If IIS is not installed and configured, then the scripts will not work.

CIMSettingClass.vbs
Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "/root/MicrosoftIISv2"

wmiQuery = "select * from CIM_Setting"

Set objWMIService = GetObject("winmgmts://" _

& strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems

WScript.Echo ": " & objItem.Name

Next

Header Information

The Header information section of CIMSettingClass.vbs, which follows, contains the normal
Option Explicit, On Error Resume Next, and six variables. The advantage of splitting out the
variables instead of including the data on the connection string is that doing so makes the
script more portable and easier to modify. Use of the variables is detailed in Table 19-1.

398 Part IV Scripting Other Applications
Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

Table 19-1 Variables Used in CIMSettingClass.vbs

Variable Use

 strComputer Holds assignment of target computer name

 wmiNS Holds the WMI namespace

 wmiQuery Holds the WMI query

 objWMIService Holds the connection into the target WMI namespace

 colItems Holds the collection of items that are returned from the WMI query

 objItem Used to iterate through the collection

Reference Information

The Reference information section of the script is used to assign values to the variables that
are listed in the Header information section. StrComputer is the target computer—the one that
is running IIS 6.0 and the one from which you are trying to obtain information. In this case,
you are targeting the server called London. You next use the variable wmiNS to hold the
namespace you want to connect into. When working with IIS 6.0, you will use the /root/
MicrosoftIISv2 namespace.

You defined the target computer and the target WMI namespace. Next, you define your query.
You use the generic "Select *" format and assign the query to the wmiQuery variable. The only
tricky issue with querying WMI is how to know which class to target and what properties the
class supports. For this information, the best tool is the Platform SDK, which is available at
http://www.msdn.microsoft.com. You can download a copy of it and install it on your laptop. (It
makes for great reading while you are sitting on the beach in Kauai. The only problem is keep­
ing sand out of the keyboard.) Pursuant to our earlier discussions, you will query the
CIM_Setting element class for names of all the read/write properties for the IIS 6.0 admin
object.

The last task you need to complete in the Reference section is setting the colItems variable
equal to the data returned from running the ExecQuery method when you feed it your WMI
query. The Reference section of the script is seen below.

strComputer = "london"

wmiNS = "/root/MicrosoftIISv2"

wmiQuery = "select * from CIM_Setting"

Set objWMIService = GetObject("winmgmts://" _

& strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

http://www.msdn.microsoft.com

Chapter 19 Managing IIS 6.0 399
Worker and Output Information

The Worker and Output information section of the script is small because most of the real
work was done in the Reference information section. Because you have a collection of items
that comes back from the WMI query, you need to iterate through the collection to display the
information. The easiest way to iterate through the collection is to use the For Each…Next con­
struction. To represent the present record being worked with, objItem is used as a placeholder.
Once you issue the next command, you move to the next record in the stream and assign it to
the objItem variable. You then simply use WScript.Echo to echo out the name of the item in the
collection. The Worker and Output section of the script is seen below.

For Each objItem In colItems

WScript.Echo ": " & objItem.name

Next

Creating a Web Site
The advantage of using WMI to create Web sites is that it gives you a consistent product and
vastly simplifies the creation process by automating dozens of minute details. For companies
that create a lot of Web sites, scripting makes a lot of sense.

Just the Steps To use WMI to create a Web site

1. Define the appropriate variables.

2. Use CreateObject to create an instance of the WbemScripting SWbemLocator object.

3. Use the locator object so that you can use the ConnectServer method to connect to the
MicrosoftIISv2 namespace on the target computer.

4. Use the service object to get an instance of "IIsWebService='W3SVC'".

5. Use the server binding object to set your bindings.

6. Use the createNewSite method to create the Web site.

The following code is CreateSite.vbs. When run on a server that has IIS installed, it will create
a Web site.

CreateSite.vbs
Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim siteName

Dim strSiteObjPath

Dim locatorObj

Dim providerObj

Dim objPath

Dim vDirObj

400 Part IV Scripting Other Applications
Dim serverObj

Dim serviceObj

Dim bindings

Dim strSitePath

strComputer = "."

wmiNS = "root/MicrosoftIISv2"

siteName = "LondonWebSite"

Set locatorObj = CreateObject("WbemScripting.SWbemLocator")

Set providerObj = locatorObj.ConnectServer _

& (strComputer, wmiNS)

Set serviceObj = providerObj.Get _

& ("IIsWebService='W3SVC'")

Set objPath = CreateObject("WbemScripting.SWbemObjectPath")

Bindings = Array(0)

Set Bindings(0) = providerObj.Get("ServerBinding") _

& .SpawnInstance_()

Bindings(0).IP = ""

Bindings(0).Port = "8383"

Bindings(0).Hostname = ""

strSiteObjPath = serviceObj.CreateNewSite _

& (siteName, Bindings, "C:\Inetpub\Wwwroot")

objPath.Path = strSiteObjPath

strSitePath = objPath.Keys.Item("")

subCheckErrors

WScript.Echo "Created " & siteName

WScript.Echo "The path/ID is " & strSitePath

Sub subCheckErrors

If Err Then

WScript.Echo "Error: " & Hex(Err.Number) _

& ": " & Err.Description

WScript.Quit(1)

End If

End Sub

Header Information

The Header information section of CreateSite.vbs includes a lot of variables. Understanding
how to use these variables will further your understanding of the script. The variables used in
this script are described in Table 19-2.

Table 19-2 Variables Used in CreateSite.vbs

Variable Use

strComputer Holds assignment of the target computer name

wmiNS Holds the WMI namespace

siteName Holds the name of the new Web site to create

strSiteObjPath Holds the path to the new Web site

Chapter 19 Managing IIS 6.0 401
Table 19-2 Variables Used in CreateSite.vbs

Variable Use

locatorObj Holds the object that comes back from SWbemLocator

providerObj Uses the object from locatorObj to make a connection to the server

objPath Holds the object that comes back from SWbemObjectPath

serviceObj Holds the object that comes back from the providerObj object to get an
instance of IIsWebService=<;$QS>W3SVC<;$QS>

bindings Holds the elements of the array that is used for ServerBinding

strSitePath Holds the key items from objPath

Reference Information

The Reference information section in CreateSite.vbs is large. This section could be condensed
somewhat by combining statements and pulling data directly into the script instead of first
populating variables. However, reducing the code by a few lines would make a much less read­
able script. You begin the Reference information section of the script by assigning a value to
strComputer. You then set the wmiNS variable to be equal to the root/MicrosoftIISv2
namespace. Note that the MicrosoftIISv2 namespace is under the root. It is not in root\cimv2,
as many of your WMI scripts have been. You now assign a name to the siteName variable,
which is the name of the Web site you will be creating.

We set the variable locatorObj to be equal to the object that comes back when you use Cre­
ateObject to create an instance of the SWbemLocator object. You need to create an instance of
the SWbemLocator object so that you can gain access to the ConnectServer method. You use
ConnectServer to connect to the root/MicrosoftIISv2 namespace on your target server. You use
the variable providerObj to hold the object.

Quick Check

Q. Why is it necessary in the CreateSite.vbs script to use the SWbemLocator object?

A. The SWbemLocator object is necessary so that you can use the ConnectServer method
that it exposes.

Q. Where does the MicrosoftIISv2 namespace reside?

A. The MicrosoftIISv2 namespace resides under the root WMI namespace.

You now set serviceObj equal to the object you get when you connect to the Web service on
your London server. Once you make your connection to the Web service, you need to build a
binding object. The binding object is a required parameter of the CreateNewSite method, and
because it has multiple elements, it is stored as an array. SpawnInstance is the WMI method
used because you’re creating a new instance on an object. The Reference section is seen below.

strComputer = "."

wmiNS = "root/MicrosoftIISv2"

siteName = "LondonWebSite"

402 Part IV Scripting Other Applications
Set locatorObj = CreateObject("WbemScripting.SWbemLocator")

Set providerObj = locatorObj.ConnectServer _

& (strComputer, wmiNS)

Set serviceObj = providerObj.Get _

& ("IIsWebService='W3SVC'")

Set objPath = CreateObject("WbemScripting." _

& "SWbemObjectPath")

Bindings = Array(0)

Set Bindings(0) = providerObj.Get("ServerBinding") _

& .SpawnInstance_()

Bindings(0).IP = ""

Bindings(0).Port = "8383"

Bindings(0).Hostname = ""

Worker and Output Information

In the Worker and Output information section of the script, the Web site is created. The vari­
able that holds the return information from using the CreateNewSite method of the IIsWebSer­
vice object is strSiteObjPath. To call the CreateNewSite method, you have to specify the site
name, the bindings, and the physical path for the files. The variable strSiteObjPath is in the for­
mat of IIsWebServer='W3SVC/1180970907'; therefore, to parse out the absolute path, you use
the SWbemObjectPath WMI object.

After you complete parsing out the absolute path, you call the subCheckErrors subroutine. In
the subCheckErrors subroutine, you check the err object and echo out both the number and
description of the error.

The script ends by echoing out the completed site name as well as the path and the unique
site ID number that was built by using the strSitePath variable. The Worker and Output sec­
tion of the script is seen below.

strSiteObjPath = serviceObj.CreateNewSite _

& (siteName, Bindings, "C:\Inetpub\Wwwroot")

objPath.Path = strSiteObjPath

strSitePath = objPath.Keys.Item("")

subCheckErrors

WScript.Echo "Created " & siteName

WScript.Echo "The path/ID is " & strSitePath

Sub subCheckErrors

If Err Then

WScript.Echo "Error: " & Hex(Err.Number) _

& ": " & Err.Description

WScript.Quit(1)

End If

End sub

Chapter 19 Managing IIS 6.0 403
Backing Up the Metabase Step-by-Step Exercises
In this section, we will develop a script that will back up the IIS metabase.

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates\Blank
Template.vbs script in Microsoft Notepad or some other script editor and save it as Your-
NameBackUpIISMetaBase.vbs.

2.	 As the first non-commented line, type Option Explicit.

3.	 Declare the following variables: strPassword, strFilePath, strMetabasePath, intFlags, locator-
Obj, providerObj, and computerObj. Your completed Header information section will look
like the following:

Option Explicit

Dim strPassword

Dim strFilePath

Dim strMetabasePath

Dim intFlags

Dim locatorObj

Dim providerObj

Dim computerObj

4.	 Define three constants to be used to control the export behavior: EXPORT_CHILDREN
= 0, EXPORT_INHERITED = 1, and EXPORT_NODE_ONLY = 2. The
EXPORT_CHILDREN constant is used to add the properties of child keys to the export
file. The EXPORT_INHERITED constant is used to add inherited properties to the
exported keys, and the EXPORT_NODE_ONLY constant does not add subkeys of the
specified key to the export file. The constants section of the script will look like the
following:

Const EXPORT_CHILDREN = 0

Const EXPORT_INHERITED = 1

Const EXPORT_NODE_ONLY = 2

5.	 Assign the password "ExportingPassw0rd" to the strPassword variable.

6.	 Specify the physical path for the exported metabase. To do this, assign the value of
"C:\exported.xml" to the strFilePath variable.

7.	 Set strMetabasePath to be equal to "/lm/logging/custom logging". This is seen in the
Metabase.xml file.

8.	 Set the intFlags variable equal to EXPORT_NODE_ONLY OR EXPORT_INHERITED con­
stants. This will tell the export command to show only the node with inherited proper­
ties. This section of the script looks like the following:

strPassword = "ExportingPassw0rd"

strFilePath = "C:\exported.xml"

strMetabasePath = "/lm/logging/custom logging"

intFlags = EXPORT_NODE_ONLY OR EXPORT_INHERITED

404 Part IV Scripting Other Applications
9.	 Set the locatorObj variable equal to the object that comes back to the SWbemLocator
object when you use the CreateObject command. This code looks like the following:

Set locatorObj = CreateObject("WbemScripting.SwbemLocator")

10.	 Set the providerObj variable equal to the object that comes back from using the
ConnectServer method of SWbemLocator. At this point, the object will be used to connect
into the London server MicrosoftIISv2 namespace. This line of code looks like the
following:

Set providerObj = locatorObj.ConnectServer _

(“London", "root/MicrosoftIISv2")

11.	 Set the computerObj variable equal to the object into IIsComputer = 'LM' when you use
the Get method of the providerObj object. This line of code looks like the following:

Set computerObj = providerObj.Get("IIsComputer = 'LM'")

12.	 Call the Export method from the computer object. The command needs the values that
are contained in the strPassword, strFilePath, strMetabasePath, and intFlags variables. The
code looks like the following:

computerObj.Export strPassword, strFilePath, strMetabasePath, intFlags

13.	 Print out the results by using the WScript.Echo command to echo out a message that
includes the values contained in the variables strMetabasePath and strFilePath. Your code
could look like the following:

WScript.Echo "Exported the node at " & strMetabasePath _

& " to " & strFilePath

14.	 Save and run the script. If it does not perform as expected, compare your script with
\My Documents\Microsoft Press\VBScriptSBS\ch19\StepByStep\BackUpIIS
MetaBase.vbs.

One Step Further: Importing the Metabase
In this section, you will restore the metabase that was backed up in the previous section.

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\BlankTemplate.vbs in
Notepad or your favorite script editor and save it as YourNameImportIISMetaBase.vbs.

2.	 As the first non-commented line, type Option Explicit.

3.	 Declare the following variables: strPassword, strFilePath, strSourceMetabasePath,
strDestinationMetabasePath, intFlags, locatorObj, providerObj, and computerObj. Your com­
pleted Header information section will look like the following:

Option Explicit

Dim strPassword

Dim strFilePath

Dim strSourceMetabasePath

Dim strDestinationMetabasePath

Chapter 19 Managing IIS 6.0 405
Dim intFlags

Dim locatorObj

Dim providerObj

Dim computerObj

4.	 Create four constants to control the import behavior. CONST IMPORT_CHILDREN = 0
recursively imports the subkeys of the specified key; CONST IMPORT_INHERITED = 1
imports the inherited properties of the keys; CONSTANT IMPORT_NODE_ONLY = 2
does not import subkeys from the specified file. The last constant is CONST
IMPORT_MERGE = 4, which merges the imported keys into the existing configuration
instead of completely replacing what previously existed. The code for this looks like the
following:

Const IMPORT_CHILDREN = 0

Const IMPORT_INHERITED = 1

Const IMPORT_NODE_ONLY = 2

Const IMPORT_MERGE = 4

5.	 Assign the password "ExportingPassw0rd" to the strPassword variable.

6.	 Specify the physical path for the exported metabase by assigning the value of

"C:\exported.xml" to the strFilePath variable.

7.	 Set the strSourceMetabasePath variable to be equal to "/lm/logging/custom logging". This
is represented in the Metabase.xml file.

8.	 Set the strDestinationMetabasePath variable to be equal to "/lm/logging/custom logging".
This value can be different from the strSourceMetabasePath variable if required.

9.	 Set the intFlags to be equal to IMPORT_NODE_ONLY OR IMPORT_INHERITED. This
will import only the node with the inherited properties. This section of code looks like
the following:

strPassword = "ExportingPassw0rd"

strFilePath = "C:\exported.xml"

strSourceMetabasePath = "/lm/logging/custom logging"

strDestinationMetabasePath = "/lm/logging/custom logging"

intFlags = IMPORT_NODE_ONLY OR IMPORT_INHERITED

10.	 Set the locatorObj variable equal to the object that comes back to the SWbemLocator
object when you use the CreateObject command. This code looks like the following:

Set locatorObj = CreateObject("WbemScripting.SWbemLocator")

11.	 Set the providerObj variable equal to the object that comes back from using the
ConnectServer method of SWbemLocator. The providerObj variable is used to connect to
the London server MicrosoftIISv2 namespace. This line of code looks like the following:

Set providerObj = locatorObj.ConnectServer _

("London", "root/MicrosoftIISv2")

406 Part IV Scripting Other Applications
12.	 Set the computerObj variable equal to the object into IIsComputer = <;$QS>LM<;$QS>
when you use the Get command of the providerObj. This line of code looks like the
following:

Set computerObj = providerObj.Get("IIsComputer = 'LM'")

13.	 Call the Import method from the Computer object. The Import method requires the vari­
ables strPassword, strFilePath, strSourceMetabasePath, strDestinationMetabasePath, and
intFlags to be set. This line of code looks like the following:

computerObj.Import strPassword, strFilePath, _

strSourceMetabasePath, strDestinationMetabasePath, intFlags

14.	 Echo out the results. Include the strFilePath variable and the strDestinationMetabasePath
variables as confirmation. Your code could look like the following:

WScript.Echo "Imported the node in " & strFilePath & " to " _

& strDestinationMetabasePath

15.	 Save and test your file. If it does not perform as expected, compare it to \My Docu­
ments\Microsoft Press\VBScriptSBS\ch19\OneStepFurther\ImportIISMetaBase.vbs.

Chapter 19 Quick Reference

To Do This

Manage IIS 6.0 Use the classes found in the MicrosoftIISv2 WMI
namespace

Locate the MicrosoftIISv2 WMI namespace Look directly under the \root namespace

Create a new IIS Web site using WMI Use the CreateNewSite method of the IISWeb-
Service class

Chapter 20

Working with Exchange 2003

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from earlier chapters:

■ Creating a connection into Microsoft Windows Management Instrumentation (WMI)

■ Creating a WMI query

■ Implementing the For…Next statement

■ Implementing the Select Case statement

After completing this chapter, you will be able to:

■ Connect to the MicrosoftExchangeV2 namespace

■ Query the Exchange_Logon class

■ Query the Exchange_Mailbox class

■ Query the Exchange_PublicFolder class

■ Query the Exchange_QueueSMTPVirtualServer class

Working with the Exchange Provider
When Exchange 2003 is installed, it creates the MicrosoftExchangeV2 namespace that resides
under the root WMI namespace. This is a rich namespace that covers a wide range of resouce
management and data management scenarios. Changes to the MicrosoftExchangeV2
namespace for Exchange 2003 are detailed in Table 20-1.

Table 20-1 Changes to the Exchange WMI namespace

WMI class Changes in Exchange 2003

ExchangeClusterResource

ExchangeConnectorState

ExchangeLink

ExchangeQueue

 No changes.

No changes.

No changes. Additional capabilities are provided in the
new Exchange_Link class.

No changes. Additional capabilities are provided in the
new Exchange_Queue class.
407

408 Part IV Scripting Other Applications
Table 20-1 Changes to the Exchange WMI namespace

WMI class Changes in Exchange 2003

ExchangeServerState No changes. Additional capabilities are provided in the
new Exchange_Server class.

Exchange_DSAccessDC No changes.

Exchange_FolderTree New class.

Exchange_Link New class.

Exchange_Logon

Exchange_Mailbox

New class.

New class.

Exchange_MessageTrackingEntry Additional message-tracking entry-type values were
added to provide more detailed tracking of internal
message-transfer events.

Exchange_PublicFolder New class.

Exchange_Queue New class.

Exchange_QueueCacheReloadEvent New class.

Exchange_QueuedMessage New class.

Exchange_QueuedSMTPMessage New class.

Exchange_QueuedX400Message New class.

Exchange_QueueSMTPVirtualServer New class.

Exchange_QueueVirtualServer New class.

Exchange_QueueX400VirtualServer New class.

Exchange_ScheduleInterval New class.

Exchange_Server New class.

Exchange_SMTPLink New class.

Exchange_SMTPQueue New class.

Exchange_X400Link New class.

Exchange_X400Queue New class.

Just the Steps To query the Exchange_QueueSMTPVirtualServer class

1. Create a variable to hold the connection into the \root\MicrosoftExchangeV2
namespace.

2. Use the ExecQuery method to select * from Exchange_QueueSMTPVirtualServer.

3. Use For Each…Next to iterate through the returned collection.

4. Use WScript.Echo to echo out the important properties.

Connecting to MicrosoftExchangeV2
To use WMI to retrieve information from Exchange 2003, you need to make a connection into
the MicrosoftExchangeV2 namespace, which is even easier to work with than the Internet Infor­

Chapter 20 Working with Exchange 2003 409
mation Server (IIS) namespace. As you will soon see, the MicrosoftExchangeV2 namespace is
very logically laid out, and the scripts will rapidly become redundant. The only trick to using
the namespace is finding the data you want to retrieve.

The Exchange_QueueSMTPVirtualServer Class
For the first code sample (ExchangeSMTPQueue.vbs), consider the
Exchange_QueueSMTPVirtualServer class, which returns properties for Simple Mail Transfer
Protocol (SMTP) queue virtual servers. ExchangeSMTPQueue.vbs is shown here:

ExchangeSMTPQueue.vbs
Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\MicrosoftExchangeV2"

wmiQuery = "Select * from Exchange_QueueSMTPVirtualServer"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "Description: " & objItem.Description

WScript.Echo "GlobalActionsSupported: " _

& objItem.GlobalActionsSupported

WScript.Echo "GlobalStop: " & objItem.GlobalStop

WScript.Echo "InstallDate: " & objItem.InstallDate

WScript.Echo "Name: " & objItem.Name

WScript.Echo "ProtocolName: " & objItem.ProtocolName

WScript.Echo "Status: " & objItem.Status

WScript.Echo "VirtualMachine: " & objItem.VirtualMachine

WScript.Echo "VirtualServerName: " & objItem.VirtualServerName

WScript.Echo "-=-"

Next

Header Information
The Header information section is going to look very similar in each of the Exchange 2003
WMI scripts, so this is the only place in this chapter you will look at it. You turn on Option
Explicit and On Error Resume Next, and then you name several variables, which are described
in Table 20-2.

410 Part IV Scripting Other Applications
Table 20-2 Variables used in ExchangeSMTPQueue.vbs

Variable Use

 strComputer Holds the name of the target computer

 wmiNS Holds the target namespace

 wmiQuery Holds the WMI query text

 objWMIService Holds the connection into WMI

 colItems Holds the returned data

objItem Used to iterate through the data

Reference Information

The Reference information section of the script is used to assign values to variables that were
declared in the Header information section. The variable strComputer is set to a period, which
means that the query will run against the local computer. The variable wmiNS is set to the
"\root\MicrosoftExchangeV2" namespace to enable you to work with Exchange 2003. In most
of our scripts, the strComputer, wmiNS, and wmiQuery references will remain exactly the same.
The only item needing modification in the Reference information section of the script is the
class from which Select * is going to run. You set objWMIService to be equal to the object that
comes back from using GetObject and the WMI moniker. This connection into WMI is tar­
geted at strComputer and the namespace represented by wmiNS. The advantage of using vari­
ables to create the connection string is that the line of code will never need to be modified!
Once you have the hook into WMI, you use that hook to cast your query. The query is con­
tained in the wmiQuery variable, and as a result, you don’t have to touch that line of code
either. Here is the Reference information section:

strComputer = "."

wmiNS = "\root\MicrosoftExchangeV2"

wmiQuery = "Select * from Exchange_QueueSMTPVirtualServer"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Worker Information

The Worker information section of the script is a For Each…Next statement. You use the
objItem variable to iterate through the data held in the colItems collection. This code does not
need to be modified. This statement looks like the following:

For Each objItem In colItems

Next

Output Information

The Output information section of the script consists of a series of WScript.Echo statements.
These statements are contained inside the For Each…Next statement in the Worker informa­

Chapter 20 Working with Exchange 2003 411
tion section of the script. The Output information section will need to be customized for
every WMI script you create using the MicrosoftExchangeV2 namespace. For
ExchangeSMTPQueue.vbs, the Output information section looks like the following:

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "Description: " & objItem.Description

WScript.Echo "GlobalActionsSupported: " _

& objItem.GlobalActionsSupported

WScript.Echo "GlobalStop: " & objItem.GlobalStop

WScript.Echo "InstallDate: " & objItem.InstallDate

WScript.Echo "Name: " & objItem.Name

WScript.Echo "ProtocolName: " & objItem.ProtocolName

WScript.Echo "Status: " & objItem.Status

WScript.Echo "VirtualMachine: " _

& objItem.VirtualMachine

WScript.Echo "VirtualServerName: " _

& objItem.VirtualServerName

Exchange Public Folders
Working with public folders in Exchange 2003 is a lot better than working with them in ear­
lier versions of Exchange, due to the enhancements of WMI. The addition of new and
expanded WMI classes makes working with public folders especially easy. The script
ExchangePublicFolders.vbs illustrates this point. As you can see from the code listing, much
of the process of connecting to and accessing useful information about Exchange 2003 public
folders via the Exchange_PublicFolder class is similar to this process in other WMI scripts.
Indeed, the only changes are using the Exchange_PublicFolder class to select the statement you
will use for the query and, of course, the Output information section of the script.

ExchangePublicFolders.vbs
Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\MicrosoftExchangeV2"

wmiQuery = "Select * from Exchange_PublicFolder"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems

WScript.Echo "AddressBookName: " & objItem.AddressBookName

WScript.Echo "AdministrativeNote: " & objItem.AdministrativeNote

WScript.Echo "AdminSecurityDescriptor: " _

& objItem.AdminSecurityDescriptor

WScript.Echo "ADProxyPath: " & objItem.ADProxyPath

412 Part IV Scripting Other Applications
WScript.Echo "AssociatedMessageCount: " _

& objItem.AssociatedMessageCount

WScript.Echo "AttachmentCount: " & objItem.AttachmentCount

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "CategorizationCount: " & _

objItem.CategorizationCount

WScript.Echo "Comment: " & objItem.Comment

WScript.Echo "ContactCount: " & objItem.ContactCount

WScript.Echo "ContainsRules: " & objItem.ContainsRules

WScript.Echo "CreationTime: " & objItem.CreationTime

WScript.Echo "DeletedItemLifetime: " _

& objItem.DeletedItemLifetime

WScript.Echo "Description: " & objItem.Description

WScript.Echo "FolderTree: " & objItem.FolderTree

WScript.Echo "FriendlyUrl: " & objItem.FriendlyUrl

WScript.Echo "HasChildren: " & objItem.HasChildren

WScript.Echo "HasLocalReplica: " & objItem.HasLocalReplica

WScript.Echo "InstallDate: " & objItem.InstallDate

WScript.Echo "IsMailEnabled: " & objItem.IsMailEnabled

WScript.Echo "IsNormalFolder: " & objItem.IsNormalFolder

WScript.Echo "IsPerUserReadDisabled: " _

& objItem.IsPerUserReadDisabled

WScript.Echo "IsSearchFolder: " & objItem.IsSearchFolder

WScript.Echo "IsSecureInSite: " & objItem.IsSecureInSite

WScript.Echo "LastAccessTime: " & objItem.LastAccessTime

WScript.Echo "LastModificationTime: " _

& objItem.LastModificationTime

WScript.Echo "MaximumItemSize: " & objItem.MaximumItemSize

WScript.Echo "MessageCount: " & objItem.MessageCount

WScript.Echo "MessageWithAttachmentsCount: " _

& objItem.MessageWithAttachmentsCount

WScript.Echo "Name: " & objItem.Name

WScript.Echo "NormalMessageSize: " & objItem.NormalMessageSize

WScript.Echo "OwnerCount: " & objItem.OwnerCount

WScript.Echo "ParentFriendlyUrl: " & objItem.ParentFriendlyUrl

WScript.Echo "Path: " & objItem.Path

WScript.Echo "ProhibitPostLimit: " & objItem.ProhibitPostLimit

WScript.Echo "PublishInAddressBook: " _

& objItem.PublishInAddressBook

WScript.Echo "RecipientCountOnAssociatedMessages: " _

& objItem.RecipientCountOnAssociatedMessages

WScript.Echo "RecipientCountOnNormalMessages: " _

& objItem.RecipientCountOnNormalMessages

WScript.Echo "ReplicaAgeLimit: " & objItem.ReplicaAgeLimit

WScript.Echo "ReplicaList: " & objItem.ReplicaList

WScript.Echo "ReplicationMessagePriority: " _

& objItem.ReplicationMessagePriority

WScript.Echo "ReplicationSchedule: " _

& objItem.ReplicationSchedule

WScript.Echo "ReplicationStyle: " & objItem.ReplicationStyle

WScript.Echo "RestrictionCount: " & objItem.RestrictionCount

WScript.Echo "SecurityDescriptor: " & objItem.SecurityDescriptor

WScript.Echo "Status: " & objItem.Status

WScript.Echo "StorageLimitStyle: " & objItem.StorageLimitStyle

WScript.Echo "TargetAddress: " & objItem.TargetAddress

Chapter 20 Working with Exchange 2003 413
WScript.Echo "TotalMessageSize: " & objItem.TotalMessageSize

WScript.Echo "Url: " & objItem.Url

WScript.Echo "UsePublicStoreAgeLimits: " _

& objItem.UsePublicStoreAgeLimits

WScript.Echo "UsePublicStoreDeletedItemLifetime: " _

& objItem.UsePublicStoreDeletedItemLifetime

WScript.Echo "WarningLimit: " & objItem.WarningLimit

WScript.Echo "-=-"

Next

Exchange_FolderTree
To look at the folder structure defined on an Exchange 2003 server, you can use the
Exchange_FolderTree class. The only changes you must make to your script are the same
changes you made to the other scripts—changing the class portion of wmiQuery to point to the
Exchange_FolderTree class. Then you must modify the Output information section to echo out
the properties you are interested in. The completed ExchangeFolderTree.vbs script is listed
here:

ExchangeFolderTree.vbs
Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = "."

wmiNS = "\root\MicrosoftExchangeV2"

wmiQuery = "Select * from Exchange_FolderTree"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems

WScript.Echo "AdministrativeGroup: " _

& objItem.AdministrativeGroup

WScript.Echo "AdministrativeNote: " _

& objItem.AdministrativeNote

WScript.Echo "AssociatedPublicStores: " _

& objItem.AssociatedPublicStores

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "CreationTime: " & objItem.CreationTime

WScript.Echo "Description: " & objItem.Description

WScript.Echo "GUID: " & objItem.GUID

WScript.Echo "HasLocalPublicStore: " _

& objItem.HasLocalPublicStore

WScript.Echo "InstallDate: " & objItem.InstallDate

WScript.Echo "LastModificationTime: " _

& objItem.LastModificationTime

WScript.Echo "MapiFolderTree: " & objItem.MapiFolderTree

414 Part IV Scripting Other Applications
WScript.Echo "Name: " & objItem.Name

WScript.Echo "RootFolderURL: " & objItem.RootFolderURL

WScript.Echo "Status: " & objItem.Status

WScript.Echo "-=-"

Next

Using the Exchange_Logon Class Step-by-Step Exercises
In this section, you use the Exchange_Logon class from the MicrosoftExchangeV2 namespace.

1.	 Open the \My Documents\Microsoft Press\VBScriptSBS\Templates\Blank
Template.vbs script in Microsoft Notepad or another script editor and save it as
YourNameExchangeLogon.vbs.

2.	 As the first non-commented line of the script, type Option Explicit.

3.	 You need to declare six variables: strComputer, wmiNS, wmiQuery, objWMIService,
colItems, and objItem. In addition, add On Error Resume Next, but comment out the line
during development. The completed Header information section of your script will look
like the following:

Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

4.	 Assign the variable strComputer to be equal to ".". This line of code will look like the
following:

strComputer = "."

5.	 Use the variable wmiNS to hold the string "\root\MicrosoftExchangeV2". This line of code
looks like the following:

wmiNS = "\root\MicrosoftExchangeV2"

6.	 Use the wmiQuery variable to be hold the string "Select * from Exchange_Logon". This line
of code looks like the following:

wmiQuery = "Select * from Exchange_Logon"

7.	 Set the variable objWMIService to be equal to the object that comes back from using the
GetObject command into WMI. Use the winmgmts moniker, specify strComputer as the
target computer, and specify wmiNS as the target namespace. This line of code looks like
the following:

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Chapter 20 Working with Exchange 2003 415
8.	 Set the colItems variable to hold the data that comes back from running the query con­
tained in the variable wmiQuery when you use the ExecQuery method. This line of code
looks like the following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

9.	 Create an empty For Each…Next statement. Use objItem as your placeholder, and use

colItems as the collection to be iterated through. This will look like the following:

For Each objItem In colItems

Next

10.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch20\
StepByStep\ StarterFileForExchangeLogon.txt file. This file contains the series of
WScript.Echo commands that goes inside the empty For Each…Next statement that was
created in step 9.

11.	 Copy all the WScript.Echo commands contained in \My Documents\Microsoft
Press\VBScriptSBS\ch20\StepByStep\ StarterFileForExchangeLogon.txt and paste
them into the For Each…Next statement. When completed, the script will look like the
following:

For Each objItem In colItems

WScript.Echo "AdapterSpeed: " & objItem.AdapterSpeed

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "ClientIP: " & objItem.ClientIP

WScript.Echo "ClientMode: " & objItem.ClientMode

WScript.Echo "ClientName: " & objItem.ClientName

WScript.Echo "ClientVersion: " & objItem.ClientVersion

WScript.Echo "CodePageID: " & objItem.CodePageID

WScript.Echo "Description: " & objItem.Description

WScript.Echo "FolderOperationRate: " _

& objItem.FolderOperationRate

WScript.Echo "HostAddress: " & objItem.HostAddress

WScript.Echo "InstallDate: " & objItem.InstallDate

WScript.Echo "LastOperationTime: " & objItem.LastOperationTime

WScript.Echo "Latency: " & objItem.Latency

WScript.Echo "LocaleID: " & objItem.LocaleID

WScript.Echo "LoggedOnUserAccount: " _

& objItem.LoggedOnUserAccount

WScript.Echo "LoggedOnUsersMailboxLegacyDN: " & objItem.LoggedOnUsersMailboxLegacy

DN

WScript.Echo "LogonTime: " & objItem.LogonTime

WScript.Echo "MacAddress: " & objItem.MacAddress

WScript.Echo "MailboxDisplayName: " & objItem.MailboxDisplayName

WScript.Echo "MailboxLegacyDN: " & objItem.MailboxLegacyDN

WScript.Echo "MessagingOperationRate: " _

& objItem.MessagingOperationRate

WScript.Echo "Name: " & objItem.Name

WScript.Echo "OpenAttachmentCount: " _

& objItem.OpenAttachmentCount

WScript.Echo "OpenFolderCount: " & objItem.OpenFolderCount

WScript.Echo "OpenMessageCount: " & objItem.OpenMessageCount

416 Part IV Scripting Other Applications
WScript.Echo "OtherOperationRate: " & objItem.OtherOperationRate

WScript.Echo "ProgressOperationRate: " _

& objItem.ProgressOperationRate

WScript.Echo "RowID: " & objItem.RowID

WScript.Echo "RPCSucceeded: " & objItem.RPCSucceeded

WScript.Echo "ServerName: " & objItem.ServerName

WScript.Echo "Status: " & objItem.Status

WScript.Echo "StorageGroupName: " & objItem.StorageGroupName

WScript.Echo "StoreName: " & objItem.StoreName

WScript.Echo "StoreType: " & objItem.StoreType

WScript.Echo "StreamOperationRate: " _

& objItem.StreamOperationRate

WScript.Echo "TableOperationRate: " & objItem.TableOperationRate

WScript.Echo "TotalOperationRate: " & objItem.TotalOperationRate

WScript.Echo "TransferOperationRate: " _

& objItem.TransferOperationRate

WScript.Echo "-=-"

Next

12.	 Save and run the script by using CScript. If it does not appear to provide the information
you expect, compare it with \My Documents\Microsoft Press\VBScriptSBS\ch20\
StepByStep\ExchangeLogon.vbs.

One Step Further: Using the Exchange_Mailbox Class
In this section, you create a script that connects to the MicrosoftExchangeV2 namespace and
queries the Exchange_Mailbox class.

1.	 Open \My Documents\Microsoft Press\VBScriptSBS\Templates\BlankTemplate.vbs in
Notepad or some other script editor and save it as YourNameExchangeMailbox.vbs.

2.	 As the first non-commented line in the new file, type Option Explicit.

3.	 You need to declare six variables: strComputer, wmiNS, wmiQuery, objWMIService,
colItems, and objItem. In addition, add On Error Resume Next, but comment out the line
during development. The completed Header information section of your script will look
like the following:

Option Explicit

'On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

4.	 Use the variable strComputer to hold the string ".". This line of code will look like the
following:

strComputer = "."

Chapter 20 Working with Exchange 2003 417
5.	 Use the variable wmiNS to hold the string "\root\MicrosoftExchangeV2". This line of code
looks like the following:

wmiNS = "\root\MicrosoftExchangeV2"

6.	 Use the wmiQuery variable to hold the string "Select * from Exchange_Mailbox". This line
of code looks like the following:

wmiQuery = "Select * from Exchange_Mailbox”

7.	 Set the variable objWMIService to be equal to the object that comes back from using the
GetObject command into WMI. Use the winmgmts moniker, specify strComputer as the
target computer, and specify wmiNS as the target namespace. This line of code looks like
the following:

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

8.	 Set the colItems variable to hold the data that comes back from running the query con­
tained in the variable wmiQuery when you use the ExecQuery method. This line of code
looks like the following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

9.	 Create an empty For Each…Next statement. Use objItem as your placeholder and use

colItems as the collection to be iterated through. This will look like the following:

For Each objItem In colItems

Next

10.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch20\OneStepFurther\Start­
erFileForExchangeMailBox.txtfile file. This file contains the series of WScript.Echo com­
mands that goes inside the empty For Each…Next statement that was created in step 9.

11.	 Copy all the WScript.Echo commands contained in \My Documents\Microsoft
Press\VBScriptSBS\ch20\OneStepFurther\ StarterFileForExchangeMailBox.txt and
paste them into the For Each…Next statement. When completed, the script will look like
the following:

For Each objItem In colItems

WScript.Echo "AssocContentCount: " & objItem.AssocContentCount

WScript.Echo "Caption: " & objItem.Caption

WScript.Echo "DateDiscoveredAbsentInDS: " _

& objItem.DateDiscoveredAbsentInDS

WScript.Echo "DeletedMessageSizeExtended: " _

& objItem.DeletedMessageSizeExtended

WScript.Echo "Description: " & objItem.Description

WScript.Echo "InstallDate: " & objItem.InstallDate

WScript.Echo "LastLoggedOnUserAccount: " _

& objItem.LastLoggedOnUserAccount

WScript.Echo "LastLogoffTime: " & objItem.LastLogoffTime

WScript.Echo "LastLogonTime: " & objItem.LastLogonTime

WScript.Echo "LegacyDN: " & objItem.LegacyDN

WScript.Echo "MailboxDisplayName: " & objItem.MailboxDisplayName

418 Part IV Scripting Other Applications
WScript.Echo "MailboxGUID: " & objItem.MailboxGUID

WScript.Echo "Name: " & objItem.Name

WScript.Echo "ServerName: " & objItem.ServerName

WScript.Echo "Size: " & objItem.Size

WScript.Echo "Status: " & objItem.Status

WScript.Echo "StorageGroupName: " & objItem.StorageGroupName

WScript.Echo "StorageLimitInfo: " & objItem.StorageLimitInfo

WScript.Echo "StoreName: " & objItem.StoreName

WScript.Echo "TotalItems: " & objItem.TotalItems

WScript.Echo "-=-"

Next

12.	 Save and run your script using CScript. If the script has problems, compare your script
to \My Documents\Microsoft Press\VBScriptSBS\ch20\OneStepFurther\
ExchangeMailbox.vbs.

Chapter 20 Quick Reference

To Do This

Manage and monitor Exchange 2003 Use the classes found in the MicrosoftExhangeV2
using WMI namespace

Connect to the MicrosoftExchangeV2 Use GetObject and the WMI moniker; also
namespace specify the target computer and the

root\MicrosoftExchangeV2 namespace

Obtain information about Exchange 2003 Query the Exchange_PublicFolder class in the
public folders root\MicrosoftExchangeV2 namespace

Chapter 21

Troubleshooting WMI Scripting

Before You Begin

To work through the material presented in this chapter, you need to be familiar with the
following concepts from earlier chapters:

■	 The basics of working with Microsoft Windows Management Instrumentation (WMI)•
namespaces

■	 The basics of writing a WMI script, connecting to namespaces, and retrieving class
information

After completing this chapter, you will be able to:

■	 Understand the services involved in making WMI work

■	 Recognize dependencies that must be met for WMI to work

■	 Evaluate symptoms of a corrupt database

■	 Understand common methods of recovering from problems with WMI

Identifying the Problem
WMI is one of those services that simply work. Most people never have to troubleshoot WMI;
in fact, many network administrators do not even know WMI exists, or that their sophisti­
cated monitoring and tracking application relies heavily upon the services of WMI. For many,
the only time they even begin to learn anything at all about WMI is when a critical application
“all of a sudden quits.” This is, unfortunately, the wrong time to begin to learn about WMI and
more importantly how to troubleshoot WMI.

Spotting Common Sources of Errors

If you were going to see a WMI error, what kind of error would it be? Or put another way, what
are some of the most common types of WMI errors? In general, problems with WMI end up
in one of four categories. These four groups of errors are listed below:

■	 WMI database corruption

■	 Distributed Component Object Model (DCOM) security issues

■	 Provider security issues
419

420 Part IV Scripting Other Applications
■ Firewall issues

That is basically it. Those are 90 percent of all the WMI support calls that our Premier Support
Services (PSS) support professionals work with. The other 10 percent are really strange, eso­
teric, downright exotic problems. We will therefore focus on the four issues that cause 90 per­
cent of the problems.

Testing the Local WMI Service
The first thing that must be done when troubleshooting WMI is to test the local WMI service
to see if it is in fact responding to requests. In fact, many problems that at first appear to be
WMI-related are not WMI problems at all. It is important to see if WMI is actually working, or
if it is corrupt, or the service is hung. The application that is using WMI could have a problem,
or the script you are trying to run could have an issue. Two utilities can be used to easily, reli­
ably, and effectively test WMI. These two utilities will not tell you specifically where you have
a problem with WMI, but they will let you know whether WMI appears to be working. If these
two tools do not work, you really do have a problem that bears further investigation. The first
utility is the WMI Control tool. The second tool we may want to use to test WMI is the Win­
dows Management Instrumentation Tester.

Using the WMI Control Tool

The most basic check you can make to see if WMI is working properly is to open the WMI
Control tool and see if it will connect. If it will not connect to the local instance of WMI run­
ning on your machine, you have a symptom of some more serious problems with WMI. If it
does connect, it does not mean no problem exists; rather, at least some things are working cor­
rectly. This is the easiest check to make, and it should be the first step in troubleshooting. If
the WMI service does not have the appropriate configuration, the connection will fail.

If the connection with the WMI Control tool succeeds, the panel seen in Figure 21-1 will
appear. On the General tab, you will see the operating system (OS) version build number, ser­
vice pack version, and the WMI version. In Windows XP and in Windows Server 2003, the OS
version number and the WMI version number should match. In Windows 2000, the version
of WMI is 1085.0005. The other information that is important from this tab is the WMI loca­
tion, which should be in %systemroot%\system32\WBEM (in most cases, %systemroot% will be
reported as C:\WINDOWS, as seen in Figure 21-1).

Chapter 21 Troubleshooting WMI Scripts 421

Figure 21-1 WMI general troubleshooting information

Paying Attention to Dependencies
By examining service dependencies, we can also obtain an indicator as to the health of
the WMI service. This is important to the troubleshooting process. I have seen cases
when someone thought they had a WMI problem and uninstalled the WMI service, or
deleted the WMI database to rebuild it, and these actions did not solve the “WMI prob­
lem.” Although not definitive, the state of a dependant service can provide a clue to the
health of WMI.

If the WMI service is not running, several other services will not function either. The
Security Center, System Management Software (SMS) Agent Host, and Windows Fire-
wall are some of the services that depend on WMI. These service dependencies can be
found in the Services tool, as seen in Figure 21-2. This means several errors should be in
the Windows system event log, which indicates service failures.

422 Part IV Scripting Other Applications
Figure 21-2 Many services depend on WMI

Using the Scriptomatic

The Scriptomatic is a tool created by the Microsoft Scripting Guys. It can be useful from a trou­
bleshooting perspective. The Scriptomatic will connect to any WMI namespace and list all the
classes in the namespace. (The Scriptomatic is available from \My Documents\Microsoft
Press\VBScriptSBS\ Resources\ScriptomaticV2.hta.) When you choose the class, it will gen­
erate a Microsoft Visual Basic, Scripting Edition (VBScript) file listing all the properties of the
class. You can then run the script from inside the ScriptoMatic. If properties are listed or if the
script that is generated does not produce any output when run, you may have a problem with
WMI.

Examining the Status of the WMI Service

If the WMI Control tool cannot make a local connection, you should check to see if the WMI
service is running. The easy way to do this is:

1. Start a new instance of the command interpreter, Cmd.exe.

2. Type net start.

3. Near the bottom of the list, look for Windows Management Instrumentation.

If Windows Management Instrumentation appears in the list, it is started. If it does not appear, it
is not running. This would be rather strange, because the WMI service should restart itself if
it stops or is stopped. The recovery setting for WMI is set to restart the service on the first and

Chapter 21 Troubleshooting WMI Scripts 423
on subsequent failures. The recovery interval is set to one minute. If the WMI service fails,
Service Recover will attempt a restart of the service every minute.

The next step in looking at the WMI service is to examine the service settings. To do this, we
will use the Services tool. The following steps will walk you through using this tool:

1.	 Click Start and then click Run.

2.	 In the Run dialog box, type Services.msc and press OK.

3.	 Scroll down the list until you find Windows Management Instrumentation.

Double-click it.

4.	 Select the Log On tab. Under Log On As, Local System Account should be checked.

Allow Service To Interact With Desktop should be unchecked.

5.	 Select the Recovery tab. Under Select The Computer’s Response If This Service Fails, the
first failure, second failure, and subsequent failures should all read Restart The Service.
Reset Fail Count After should read 1 Days, and Restart Service After should read 1 Min­
utes. This is illustrated in Figure 21-3.

Figure 21-3 Use the Services tool to inspect and correct recovery settings

Using WBEMtest.exe

The Windows Management Instrumentation Tester can be used to troubleshoot WMI. In
addition to just checking to see if WMI is actually running and accepting connections (as the
WMI Control tool does), WBEMtest can be used to test the functionality of nearly every aspect
of WMI, including security. One thing to keep in mind when using WBEMtest is that it cannot

424 Part IV Scripting Other Applications
be used to specify alternate credentials for a local connection. To test alternate credentials, you
must make a remote connection. In effect, WBEMtest is using the SWbemLocator method to
supply alternate credentials, and SwbemLocator does not permit supplying alternate creden­
tials for a local connection.

Quick Check

Q. What is the easiest way to see if WMI is really broken?

A. The easiest way to see if WMI is really broken is to open the WMI Control tool. If it makes
a connection to WMI, then WMI is not totally broken—there may be other problems, but
WMI is not completely broken. On the other hand, if the WMI Control tool is not able to
connect, you have a problem.

Q. Why is WBEMtest unable to permit you to make a local connection into WMI using
alternative credentials?

A. The reason WBEMtest will not permit you to make a local connection into WMI using
alternative credentials is that WMI itself does not permit it.

Testing Remote WMI Service
WMI is already set up to run remotely. We use essentially the same procedures for testing the
remote WMI service as we use when working locally. In the initial stages of testing the ability
of WMI to respond to remote requests, the tools and the procedures are very similar.

Remotely Using the WMI Control Tool

The first tool to use will be the WMI Control tool. We must make sure we start it in the correct
manner, or else the “remote” function of the tool will not be available. The following steps
illustrate using the WMI Control tool to make a remote connection.

1. Click Start and then click Run.

2. Type wmimgmt.msc in the Run dialog box and click OK.

3. Right-click WMI Control (Local).

4. Select Connect To Another Computer... .

5. Select another computer and enter the remote computer name.

6. If needed, click Change to provide user credentials.

7. Click OK.

8. Right-click WMI Control (Remote System Name).

9. Select Properties.

Chapter 21 Troubleshooting WMI Scripts 425
If you are not able to make a remote connection with the WMI Control tool, then you need to
ensure you have checked WMI locally on each machine. If you have checked both machines
locally, the next steps you want to do are listed below:

1. Check connectivity.

2. Check firewall issues.

3. Check rights/permissions.

4. Check DCOM settings.

Testing Scripting Interface
After we have checked for local and for remote WMI functionality, we may need to test the
scripting interface. To do this, we will need to check both the core WMI provider and the pro­
vider host interface. We can use a script to do this. In the RetrieveWMISettings.vbs script, we
use the connectServer method from the SWbemLocator object. The reason for doing this is the
SWbemLocator object is already set up for us to specify alternative connections on a remote
computer. This will allow a fuller range of tests. We connect to the WIN32_WMISetting class.
There is only one instance of the WIN32_WMISetting class. We can use the ampersand to
enable us to get the one instance of the WIN32_WMISetting class that represents the WMI set­
tings for the computer. After we have executed our query, we use the GetObjectText_ method,
which will retrieve all the properties in the class as well as the values assigned to those prop­
erties. The output text will be in Managed Object Format (MOF) format. The MOF format pro­
vides an easy way to create and register items into the WMI repository. We cannot specify any
modifiers for this method. The input flag is optional. If you choose to specify the input flag,
you must supply a zero, because 0 is the only allowed value for this flag. Specifying the input
flag will not change the way the method operates, so we leave it off in the
RetrieveWMISettings.vbs script. The Header information section of the script is left out for
clarity purposes.

RetrieveWMISettings.vbs
strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Win32_WMISetting=@"

strUsr =""'Blank for current security. Domain\Username

strPWD = ""'Blank for current security.

strLocl = "MS_409" 'US English. Can leave blank for current language

strAuth = ""'If specify domain in strUsr this must be blank

iFlag = "0" 'Only two values allowed here: 0 (wait for connection) 128 (wait max two min)

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = objLocator.ConnectServer(strComputer, _

wmiNS, strUsr, strPWD, strLocl, strAuth, iFLag)

Set objItem = objWMIService.get(wmiQuery)

WScript.Echo objItem.GetObjectText_

426 Part IV Scripting Other Applications
If the RetrieveWMISettings.vbs script works, you have successfully tested the core WMI func­
tionality. You have not, however, tested other WMI providers, only the WbemCore provider.
The RetrieveComputerSystem.vbs script uses the WIN32_ComputerSystem class. The
WIN32_ComputerSystem class relies on the CIMWin32 provider, and a query to this class will
exercise an extremely important WMI provider. We specify the name of the computer in the
strComputer variable, but because we want to use the Get method, we need to specify a partic­
ular instance of the WIN32_ComputerSystem class, which happens to be the local machine.
When we use the WMI moniker to make a WMI connection, we do not supply the computer
name in single quotation marks. We contain it in a variable called strComputer, which is delim­
ited by double quotation marks. When we supply a computer name for the Key Name prop­
erty of the WIN32_ComputerSystem class, WMI wants the computer name to be embedded
inside single quotation marks. The use of quotation marks when supplying values to WMI is
not consistent. At times numbers do not need quotation marks, but strings do. It is best to use
quotation marks, and if it fails, then remove them. To use a single variable for these two uses,
which have different requirements, we devised the simple funFix function and included it at
the bottom of the script. All it does is take the string that is supplied to it, append a single quo­
tation mark as both a prefix and as a suffix, and assign the resultant string to the function
name. This allows dual use of the same variable name.

RetrieveComputerSystem.vbs
strComputer = "London" 'name of the target computer system

wmiNS = "\root\cimv2"

wmiQuery = "win32_ComputerSystem.name=" & funFix(strComputer)

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set objItem = objWMIService.get(wmiQuery)

Wscript.Echo myFun(wmiQuery) & objItem.getObjectText_

Function myFun(input)

Dim lstr

lstr = Len(input)

myFun = input & vbcrlf & string(lstr,"=")

End Function

Function funFix(strIN) 'computer name needs single '

funFix = "'" & strIN & "'"

End function

Obtaining Diagnostic Information
If the previously discussed checks do not point to an immediate solution, the next step is to
obtain more information. To do this, you have several tools at your disposal. The primary
source of troubleshooting information is WMI logging. By changing the logging level to
Verbose, you will generate a diagnostic trace of WMI events in several WMI logs.

Chapter 21 Troubleshooting WMI Scripts 427
Enabling Verbose WMI Logging

WMI has three logging levels: Disabled, Errors Only, and Verbose. These logging levels are
recorded in the registry at the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM\Logging

A value of 0 disables all logging, a 1 will enable errors only logging, and a value of 2 will set the
logging to Verbose.

These logging levels can be set using the WMI Control tool. As seen in Figure 21-4, the logging
levels are displayed on the Logging tab—the same tool used to increase or decrease the logging
level. After the WMI problem is solved, it is important that you reduce the logging level back
to Errors Only, or the increased logging activity could cause performance problems for WMI
and for all applications that rely upon its services. To increase the logging level, follow the
steps listed below:

1. Click Start and then click Run.

2. In the Run dialog box, type wmimgmt.msc and click OK.

3. Right-click WMI Control (Local).

4. Select Properties.

5. Select the Logging tab.

6. Change Logging Level to Verbose.

7. Increase the maximum log size to 256,000 or higher.

8. Click OK and close the Microsoft Management Console (MMC).

Increasing the logging level will take effect immediately in Windows XP and on Windows
Server 2003. Earlier versions of Windows will require a reboot.

428 Part IV Scripting Other Applications
Figure 21-4 Verbose logging is a primary source of troubleshooting information

Examining the WMI Log Files

The WMI log files are stored in the %systemroot%\system32\WBEM\Logs\ directory by
default. This is configurable from the Logging tab, as seen in Figure 21-4. In addition, the
WMI log file directory is recorded in the registry at the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM\Logging Directory

If you open the Logs directory, you will find a number of WMI logs. One of the challenges in
troubleshooting WMI is to select the correct log file in which to look for the correct informa­
tion that is needed to troubleshoot the problem at hand. Table 21-1 provides a quick listing of
the most common WMI log files, as well as the purpose of each file.

Table 21-1 WMI log files and their usage

Log File Purpose

Dsprovider.log Traces information and error messages for the Directory Services
provider

Framework.log Traces information and error messages for the provider framework
and the Win32 provider

MofComp.log Compiles details from the MOF compiler, including MofComp failures
during setup

Ntevt.log Traces messages from the Event Log provider

Setup.log Reports on MOF files that failed to load during the setup process

Viewprovider.log Traces information from the View provider

Chapter 21 Troubleshooting WMI Scripts 429
Table 21-1 WMI log files and their usage

Log File Purpose

WbemCore.log Provides logging from the WbemCore provider

Wbemess.log Logs entries related to events

Wbemprox.log Traces information for the WMI proxy server; remote logons

Winmgmt.log Traces information that is typically not used for diagnostics

Wmiadap.log Provides error messages related to the AutoDiscoveryAutoPurge
(ADAP) process

Wmiprov.log Provides management data and events from WMI-enabled Windows
Driver Model (WDM) drivers; hardware

Your computer system may or may not have all these log files. Some of the providers will have
their own procedure for configuring logging levels. For example, the View provider requires
adding a registry key to the following location:

HKEY_LOCAL_MACHINE \SOFTWARE\Microsoft\WBEM\

PROVIDERS\Logging\ViewProvider\Level

Once the registry key is added, you use the same 0, 1, and 2 values to configure no logging,
error only logging, or verbose logging respectively. This works in the same way as setting the
overall WMI logging level.

The key WMI log files that you will probably use the most are listed below:

■ WbemCore.log

■ MofComp.log

■ Wbemprox.log

Tip Use the date. When I am troubleshooting a WMI issue, once I bump up the diagnostic
logging, the next thing I do is try to reproduce the problem. If I am successful in reproducing
the problem, I will note the time, open the WMI logging directory, and sort by time. Some­
times, if I am lucky, I will find a log file with a time stamp that is very nearly the time I noted
when I was able to reproduce the error. I also like to use the VBScript Now function in my script
that is generating the error, because it will give me a time stamp I can refer back to when I am
analyzing a diagnostic log file. If you follow this simple procedure, you can easily eliminate
more than half of the WMI log files in your troubleshooting due to the fact they were not
updated around the same time that you reproduced the error.

Using the Err Tool

As you look through the WMI log files, you will quickly see that they are filled with strange
numbers. The Err.exe tool is sometimes called the Exchange Server Error Code Look-Up Tool,
but it is much more than that. It pulls error codes from header files installed on your com­
puter. On my Windows XP computer at home, it can supply information on nearly 20,000

430 Part IV Scripting Other Applications
error messages that come from more than 170 different sources--and I don’t even have
Microsoft’s Exchange server installed at home! The Err.exe tool can be downloaded for free
from the Microsoft Download center at http://www.microsoft.com/downloads. If you do a
search for Exchange Server Error Code, the Err.exe tool will be the only item returned. We will
use the Err tool in the Step-by-Step exercise while troubleshooting some WMI script prob­
lems. The Err tool is a single executable and does not need installation. This means it can eas­
ily be copied to any machine. To use the Err tool, type err at a command prompt (ensuring it
is in the path) and supply an error number. An example of this is seen below:

C:\Utils>err 0x80041003

The tool will return every match it has for the error number. You may get only one item or you
may get many, depending on the error number. You should always look for a source that is
related to what you are troubleshooting. In the output below, we see there are two sources that
generate an 0x80041003 error. But because we are troubleshooting a WMI problem, we
choose the meaning Access Denied, because it is generated from wbemcli.h. We choose this
meaning from the Err.exe output because wbemcli looks similar to wbem client—which
sounds like an application that is using WMI.

for hex 0x80041003 / decimal -2147217405 :

REC_E_TOODIFFERENT reconcil.h

WBEM_E_ACCESS_DENIED wbemcli.h

2 matches found for "0x80041003"

Using MofComp.exe

MofComp.exe is a tool that is used to compile MOF files. We will use MofComp in the One
Step Further exercise. There are basically two times when you will need to use MofComp. If
you have a MOF file you need in WMI, you will need to run MofComp to add the MOF to the
repository. You would use MofComp in these situations to add additional functionality to
WMI. Some applications do not register themselves with WMI for autorecovery, and if you
ever delete the repository, you will need to recompile those MOFs back into WMI after
rebuilding the repository. In either case, the syntax is the same. If we look at the number of
switches available for MofComp, it looks like a rather complicated tool. This is seen below:

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.

usage: mofcomp [-check] [-N:<Path>]

[-class:updateonly|-class:createonly]

[-instance:updateonly|-instance:createonly]

[-B:<filename>] [-P:<Password>] [-U:<UserName>]

[-A:<Authority>] [-WMI] [-AUTORECOVER]

[-MOF:<path>] [-MFL:<path>] [-AMENDMENT:<Locale>]

[-ER:<ResourceName>] [-L:<ResourceLocale>]

<MOF filename>

-check Syntax check only

http://www.microsoft.com/downloads

Chapter 21 Troubleshooting WMI Scripts 431
-N:<path> Load into this namespace by default

-class:updateonly Do not create new classes

-class:safeupdate Update unless conflicts exist

-class:forceupdate Update resolving conflicts if possible

-class:createonly Do not change existing classes

-instance:updateonly Do not create new instances

-instance:createonly Do not change existing instances

-U:<UserName> User Name

-P:<Password> Login password

-A:<Authority> Example: NTLMDOMAIN:Domain

-B:<destination filename> Creates a binary MOF file, does not add to DB

-WMI Do Windows Driver Model (WDM) checks, requires -B switch

-AUTORECOVER Adds MOF to list of files compiled during DB recovery

-Amendment:<LOCALE> splits MOF into language neutral and specific versions

where locale is of the form "MS_4??"

-MOF:<path> name of the language neutral output

-MFL:<path> name of the language specific output

-ER:<ResourceName> extracts binary mof from named resource

-L:<ResourceLocale> optional specific locale number when using -ER switch

Example c:>mofcomp -N:root\default yourmof.mof

Most of the time, you will not need any of these switches. In its most basic form, the MOF file
tells WMI where to compile the class, namespace, or instance of an event provider. Using
MofComp in this fashion only requires that you type mofcomp mymof.mof with no switches.
Of course, mymof.mof would need to be the name of the MOF file you were trying to compile.
The next most common MofComp command is one where you need to specify the namespace
into which the MOF will be compiled. This is illustrated below:

C:\mofcomp –N:root\myNameSpace myMofFile.mof

Using WMIcheck

WMIcheck.exe is a tool that was developed by Microsoft Premier Support Services to aid in
quickly gathering all the information needed to perform initial troubleshooting of WMI con­
figuration problems. The amount of information supplied by this tool can save you hours of
information gathering. It is included in the \My Documents\Microsoft
Press\VBScriptSBS\Resources folder on the CD accompanying this book. To use the
WMIcheck.exe tool, you open a command prompt and type the following command:

C:\>wmicheck >wmiCheck.txt

Open the WMIcheck.txt file that is produced by running the WMIcheck.exe program, in
Microsoft Notepad. Some of the items reported by this program are listed below:

■ Registry settings for WMI, including default namespace, logging levels, and log file sizes

■ Operating system version and service pack level

■ Software installed on the computer

432 Part IV Scripting Other Applications
■	 Services and processes running on the computer

■	 A listing of namespaces, providers, and event filters defined on the computer

General WMI Troubleshooting Steps
If you determine that WMI does in fact have a problem, you must consider several issues.
These are detailed below:

■	 DCOM security WMI uses DCOM. Changes in DCOM security settings will prevent
WMI from working properly.

■	 Service settings The Windows Management Instrumentation service must be running
for WMI to work. If this service is disabled, WMI will not work. The Windows Manage­
ment Instrumentation service must log on with local system privileges. If this account is
changed, WMI will not have the permissions needed to operate properly.

■	 Module registration The basic WMI service is robust. Due to the flexible nature of
WMI, many software vendors use it to provide management of everything from applica­
tions to hardware monitoring. These classes often require special modules to be regis­
tered. The WMI Check tool can be used to report on the state of these modules. If the
application is not working, and the modules are not registered, the application may
need to be re-installed. At a minimum, the modules will need to be registered.

■	 Rebuild WBEM repository Rebuilding the WMI repository should be the last step—not
the first step—in troubleshooting WMI. It is easy to do so. You stop the WMI service,
delete the database, and restart the database. But if it does not fix the problem, what do
you do? Make sure you have a backup of the WMI database prior to deleting the data­
base. If rebuilding does not solve the problem, and you have custom settings, you can
always perform a restoration.

Quick Check

Q. What are two tools you can use to see if WMI is accepting connections?

A. The two tools you can use to see if WMI is accepting connections are the WMI Control
tool and WBEMtest.exe.

Q. If you want to produce a list of WMI classes in a namespace, choose a class, and see a
sample WMI script produced that you can run to test WMI with, what tool would you
use?

A. If you need to produce a list of WMI classes in a namespace, choose a class, and see a
sample WMI script produced that you can run to test WMI with, you would use the
Scriptomatic.

Q. If you want to test user credentials for a WMI connection on a remote computer, which
tool can you use?

A. If you need to test user credentials for a WMI connection on a remote computer, you can
use WBEMtest.exe.

Chapter 21 Troubleshooting WMI Scripts 433
Q. If you receive a strange error number in the event log and you need to look up the
meaning quickly and easily, what tool can you use?

A. If you receive a strange error number in the event log and you need to look up the mean­
ing quickly and easily, you can use the Err.exe tool to translate the number into something
more meaningful.

Q. If you need to compile a MOF file into the repository, what tool can you use?

A. If you need to compile a MOF file into the repository, use MofComp.exe.

Working with Logging Step-by-Step Exercises
In this section, we will use WMI logging capabilities to assist in troubleshooting a scripting
problem. To do this, we will increase the logging level to Verbose and run two scripts that have
a few problems in them. We will conclude the exercise by running a good script and compar­
ing the information that is logged from this script with the results from the bad scripts.

1. Increase the WMI logging level. Click Start and then click Run.

2. In Open dialog box, type wmimgmt.msc and then click OK.

3. Right-click WMI Control (Local).

4. Select Properties.

5. Select the Logging tab.

6. Change the logging level to Verbose.

7. Increase the maximum log size to 256,000 or more.

8. Click OK and close the MMC.

9. Open the WMI logging directory in Windows Explorer. The directory is listed below:

C:\WINDOWS\system32\wbem\Logs

10.	 Sort the file view by date. You can do this by clicking the Date Modified tab at the top of
the Date column. Ensure that the most recent dates are on the top.

11.	 Open the \My Documents\Microsoft Press\VBScriptSBS\ch21\StepByStep\
BadScript1.vbs script and run it. (Don’t worry, it will not break anything.) Do not close
the script output window. You will need the time stamp that is returned from the Now
function.

12.	 When the script completes, make a note of the exact date and time the script completed.

13.	 Go to the WMI log file directory and press the F5 function key to refresh the view of the
file dates. Examine the file dates closely. Do you see any that match (or are very close) to
the time stamp that was produced by running BadScript1.vbs? You should see at least
three files with time stamps very near the time indicated by the running of the

434 Part IV Scripting Other Applications
BadScript1.vbs file. The three files should be WinMgmt.log, Wbemprox.log, and
WbemCore.log.

14.	 If you do not see any recent files with a recent date modified time stamp, you can refresh
the folder view by pressing F5. If you still do not see any log files with a date modified
time stamp close to the one resulting from running BadScript1.vbs, then go back and
double-check to ensure the Verbose WMI logging level is properly set. If you are using
an operating system earlier than Windows XP, you will need to restart the WMI service
for the logging level change to take effect. Windows XP and Windows Server 2003
dynamically apply the changes.

15.	 Once you have found the log files, open WinMgmt.log with Notepad and scroll to the
bottom of the file. Look for the time stamp that matches (or at least is within a few sec­
onds of) the time produced by BadScript1.vbs. You will see some errors that look similar
to the following:

(Sat Jul 30 06:41:16 2005.36668000) : Got a provider can unload event

(Sat Jul 30 06:41:46 2005.36698000) : Got a TIMEOUT work item

(Sat Jul 30 06:41:46 2005.36698000) : Got a FinalCoreShutdown work item

(Sat Jul 30 06:41:59 2005.36710921) : CForwardFactory::CreateInstance

(Sat Jul 30 06:42:01 2005.36713000) : Got a provider can unload event

16.	 Open the Wbemprox.log file with Notepad and scroll to the bottom of the file. Again
look for the time stamp. You will see some errors that look like the following:

(Sat Jul 30 06:41:59 2005.36710921) : Using the principal -RPCSS/

Acapulco.NWTraders.MSFT

(Sat Jul 30 06:41:59 2005.36710921) : ConnectViaDCOM, CoCreateInstanceEx resulted in h

r = 0x0

(Sat Jul 30 06:41:59 2005.36710921) : NTLMLogin resulted in hr = 0x8004100e

17.	 Once you find the NTLMLogin resulted in line, note that it says hr = 0x8004100e. This is
the result code that is returned from trying to connect to WMI. If we look up the error
0x8004100e using the Err.exe tool, we might be able to find more information. The
Err.exe tool does not provide answers to all error codes, but if the error is in the WMI
files, the tool should find a match.

18.	 Open up a command prompt and change to the directory where you have the Err.exe
tool installed. Type the following command:

Err 0x8004100e

19.	 Examine the output from the Err tool. The output looks like the following:

C:\Utils>err 0x8004100e

for hex 0x8004100e / decimal -2147217394 :

WBEM_E_INVALID_NAMESPACE wbemcli.h

1 matches found for "0x8004100e"

From the output we can see that part of the problem is related to an invalid namespace.

Chapter 21 Troubleshooting WMI Scripts 435
20.	 Open the WbemCore.log file and find the time stamp that is close in time to when you
ran BadScript1.vbs. You will find an entry that looks similar to the one listed below:

Sat Jul 30 06:41:59 2005.36710921) : CALL ConnectionLogin::NTLMLogin

wszNetworkResource = \\.\root\cimv1

pPreferredLocale = (null)

lFlags = 0x0

(Sat Jul 30 06:41:59 2005.36710921) : DCOM connection from NWtraders\LondonAdmin at au

thentiction level Privacy, AuthnSvc = 10, AuthzSvc = 0, Capabilities = 0

(Sat Jul 30 06:42:01 2005.36713000) : + DllCanUnloadNow()

(Sat Jul 30 06:42:01 2005.36713000) : - DllCanUnloadNow() S_FALSE

(Sat Jul 30 06:42:01 2005.36713000) : + DllCanUnloadNow()

(Sat Jul 30 06:42:01 2005.36713000) : - DllCanUnloadNow() S_FALSE

From examining the output, can you determine the problem with the script? Can you
see the reason for the failed login reported in the Wbemprox.log file? Do you see why
the error that was reported was invalid namespace? The namespace is specified as
root\cimv1. WMI is unable to authenticate a user against a WMI namespace that does
not exist.

21.	 Run the BadScript2.vbs script. Retain the time stamp from the script.

22.	 Open the WinMgmt.log file and locate the time that is closest to the time stamp
retrieved from running BadScript2.vbs. The error messages should be near the bottom
of the script. Compare the results from BadScript1.vbs in the WinMgmt.log file with the
results from BadScript2.vbs. What is the difference between the two results? The
BadScript2.vbs script should not record any errors in the WinMgmt.log file. The entry
from BadScript2.vbs should look like the following:

(Sat Jul 30 07:39:35 2005.40167562) : CForwardFactory::CreateInstance

23.	 Open Wbemprox.log and locate the entries closest in time to the time stamp retrieved
from BadScript2.vbs. The entries should be near the bottom of the file.

24.	 Do you find any errors listed in the Wbemprox.log file? No.

25.	 Compare the results in Wbemprox.log from BadScript2.vbs to the results generated by
BadScript1.vbs. Are there any differences? Yes. The following line was generated by
BadScript1.vbs, but not generated by BadScript2.vbs:

(Sat Jul 30 06:41:59 2005.36710921) : NTLMLogin resulted in hr = 0x8004100e

26.	 What does the absence of an error here mean? It indicates that the NTLMLogin opera­
tion succeeded. The connection to root\cimv2 was successful.

27.	 Open the WbemCore.log file and find the time stamp from the BadScript2.vbs run. It
should be near the bottom. Compare the results from running BadScript2.vbs to the
results from running BadScript1.vbs in the log file. Notice there are far more entries in
the log file. You should find entries that look similar to the following:

(Sat Jul 30 07:39:35 2005.40167562) : CALL ConnectionLogin::NTLMLogin

wszNetworkResource = \\.\root\cimv2

pPreferredLocale = (null)

436 Part IV Scripting Other Applications
lFlags = 0x0

(Sat Jul 30 07:39:35 2005.40167562) : DCOM connection from NWTRADERS\LondonAdmin at au

thentiction level Privacy, AuthnSvc = 10, AuthzSvc = 0, Capabilities = 0

(Sat Jul 30 07:39:35 2005.40167562) : CALL CWbemNamespace::ExecQuery

BSTR QueryFormat = WQL

BSTR Query = Select * from win32_Processer

IEnumWbemClassObject **pEnum = 0x28FD0C8

(Sat Jul 30 07:39:35 2005.40167562) : CALL CWbemNamespace::ExecQueryAsync

BSTR QueryFormat = WQL

BSTR Query = Select * from win32_Processer

IWbemObjectSink* pHandler = 0x0

(Sat Jul 30 07:39:35 2005.40167562) : STARTING a main queue thread 548 for a total of

1

(Sat Jul 30 07:39:35 2005.40167578) : CALL CWbemNamespace::ExecQuery

BSTR QueryFormat = Wql

BSTR Query = Select * from __ClassProviderRegistration

IEnumWbemClassObject **pEnum = 0xF7F9C0

(Sat Jul 30 07:39:35 2005.40167578) : CALL CWbemNamespace::ExecQueryAsync

BSTR QueryFormat = Wql

BSTR Query = Select * from __ClassProviderRegistration

IWbemObjectSink* pHandler = 0x0

(Sat Jul 30 07:39:35 2005.40167578) : STARTING a main queue thread 2032 for a total of

2

(Sat Jul 30 07:39:47 2005.40179578) : STOPPING a main queue thread 548 for a total of

1

(Sat Jul 30 07:39:47 2005.40179578) : STOPPING a main queue thread 2032 for a total of

0

In examining the log file, were we able to parse a WQL query? Yes. This is indicated by
the following line in the log file:

(Sat Jul 30 07:39:35 2005.40167562) : CALL CWbemNamespace::ExecQuery

BSTR QueryFormat = WQL

BSTR Query = Select * from win32_Processer

IEnumWbemClassObject **pEnum = 0x28FD0C8

28.	 Did BadScript1.vbs succeed in parsing a WQL query? No. There is no entry similar to
the one above listed in WbemCore.log around the time the BadScript1.vbs script ran.

29.	 After the query is parsed, it now tries to find the class that is referenced in the query.
Locate the entries that try to identify the class provider. The entries will look like the
following:

(Sat Jul 30 07:39:35 2005.40167578) : CALL CWbemNamespace::ExecQuery

BSTR QueryFormat = Wql

BSTR Query = Select * from __ClassProviderRegistration

IEnumWbemClassObject **pEnum = 0xF7F9C0

30.	 Examine the WbemCore.log file. Did the query for the class provider succeed? No.
There is no indication in the log file that the query succeeded. The next entry in the log
indicates the main thread queue stops, this is a normal log file entry, and it indicates
WMI has finished processing the request. This is seen below:

(Sat Jul 30 07:39:47 2005.40179578) : STOPPING a main queue thread 548 for a total of

1

Chapter 21 Troubleshooting WMI Scripts 437
31.	 To compare our results from bad scripts with the results of a good script, run the
GoodScript1.vbs script. Pay attention to the script complete time stamp.

32.	 Open Winmgmt.log and find the time stamp from running GoodScript1.vbs. Compare
your results from running GoodScript1.vbs with the results from running
BadScript2.vbs. They are similar.

33.	 Open Wbemprox.log and find the time stamp from running GoodScript1.vbs. Compare
the results from running BadScript2.vbs. They are similar. This indicates that both
BadScript2.vbs and GoodScript1.vbs were able to make a connection into WMI and
have the query parsed.

34.	 Open WbemCore.log and compare the results from running BadScript2.vbs and the
results from running GoodScript1.vbs. What do you notice? There are far more entries
from GoodScript1.vbs. Why is this the case? The good script ran to completion. You may
notice some errors in the log files, but these are not necessarily related to
GoodScript1.vbs. WMI is used for many activities and there could be other processes
logging at the same time. If you are having trouble locating the logging from your script,
you can look at \My Documents\Microsoft Press\VBScriptSBS\ch21\StepByStep
\GoodScript1Events.txt.

35.	 Can you identify the name of the provider that supplies WIN32_Processor? Yes. It is
CIMWin32.

One Step Further: Compiling MOF files
In this section, we will use MofComp.exe to compile MOF files into the WBEM repository. We
will first create a new namespace using MofComp.exe and a MOF file. We will then delete
that namespace by using MofComp.exe and a MOF file. Next, we will create an instance of the
ActiveScriptEventConsumer class. Following that, we will delete the instance of the active script
consumer we create.

1.	 Copy the four MOF files in the \My Documents\Microsoft
Press\VBScriptSBS\ch21\OneStepFurther folder to a directory you can easily access
from a command prompt.

2.	 Open a command prompt.

3.	 At the command prompt, use MofComp to compile Createnamespace.mof. This will
create a new namespace in WMI off the root namespace that is called Mynamespace. The
syntax of the command will look something like the following:

C:\FSO>mofcomp createnamespace.mof

The output from this command will look like the following:

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.

Parsing MOF file: createnamespace.mof

438 Part IV Scripting Other Applications
MOF file has been successfully parsed

Storing data in the repository...

Done!

4.	 Run the \My Documents\Microsoft Press\VBScriptSBS\ch21\

OneStepFurther\ ListWMINamespace.vbs script to confirm the namespace was

created.

5.	 Now we want to delete the namespace. At the command prompt, use MofComp to com­
pile Deletenamespace.mof. The command will look like the following:

C:\FSO>mofcomp deletenamespace.mof

The output from the command will look like the following:

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.

Parsing MOF file: deletenamespace.mof

MOF file has been successfully parsed

Storing data in the repository...

Done!

6.	 Now we want to create a new instance of the ActiveScriptEventConsumer class. We have a
MOF file that will write to an event log when Calc.exe is closed out. It will require a
reboot to take effect.

7.	 At the command prompt, use MofComp to compile the Asec.mof MOF file. This MOF
file will take about a minute to compile, so do not get alarmed when it does not compile
as quickly as the two previous files did. The command to do this will look like the fol­
lowing:

C:\FSO>mofcomp asec.mof

When it is completed compiling, the output will look like the following:

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.

Parsing MOF file: asec.mof

MOF file has been successfully parsed

Storing data in the repository...

Done!

8.	 Reboot your computer and launch Calc.exe. Use it for a minute or so and perform some
calculations with it. Exit the calculator.

9.	 Navigate to your C drive, where you should see a text file called Asec.log. Delete the log
file. If you do not see a log file there within 5 to 10 seconds, then check the Windows
Application event log for errors.

10.	 The last thing we need to do is to delete the instance of the active script event consumer.
To do this, we will compile the DeleteAsec.mof file using MofComp. The command to
do this will look like the following:

C:FSO\>mofcomp deleteasec.mof

Chapter 21 Troubleshooting WMI Scripts 439
If the delete is successful, you will see an output similar to the following:

Microsoft (R) 32-bit MOF Compiler Version 5.1.2600.2180

Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.

Parsing MOF file: deleteasec.mof

MOF file has been successfully parsed

Storing data in the repository...

Done!

Chapter 21 Quick Reference

To Do This

Determine if WMI service is accepting
new connections

Use WBEM Test

Test the scripting interface of WMI service Use the Scriptomatic

Quickly diagnose the health of the WMI
service

Open the WMI control tool

See if the WMI service is running Use the Services tool

Part V

Appendices

In this part:

Appendix A: VBScript Documentation . 443

Appendix B: ADSI Documentation . 449

Appendix C: WMI Documentation . 457

Appendix D: Documentation Standards . 463

Appendix E: Special Folder Constants . 467

Appendix A

VBScript Documentation

Constants
The constants in Tables A-1 through A-6 are built into Microsoft Visual Basic, Scripting Edi­
tion (VBScript) and therefore do not need to be defined prior to use. You can use them any­
where in your code to represent the values shown.

Table A-1 String constants

Constant Value Description

vbCr Chr(13) Carriage return

VbCrLf Chr(13) and Chr(10) Carriage return–linefeed combination

vbFormFeed Chr(12) Form feed; not useful in Microsoft Windows

vbLf Chr(10) Line feed

vbNewLine Chr(13) and Chr(10) or Platform-specific newline character; whatever is
Chr(10) appropriate for the platform

vbNullChar Chr(0) Character having the value 0

vbNullString String having value 0 Not the same as a zero-length string (““); used for
calling external
procedures

vbTab Chr(9) Horizontal tab

vbVerticalTab Chr(11) Vertical tab; not useful in Microsoft Windows

Table A-2 Comparison constants

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison

vbTextCompare 1 Perform a textual comparison

Table A-3 Date and time constants

Constant Value Description

VbSunday 1 Sunday

VbMonday 2 Monday

vbTuesday 3 Tuesday

444 Appendix A VBScript Documentation
Table A-3 Date and time constants

Constant Value Description

vbWednesday 4 Wednesday

vbThursday 5 Thursday

VbFriday 6 Friday

vbSaturday 7 Saturday

VbUseSystemDayOfWeek 0 Use the day of the week specified in your system set­
tings for the first day of the week

VbFirstJan1 1 Use the week in which January 1 occurs (default)

vbFirstFourDays 2 Use the first week that has at least four days in the new
year

vbFirstFullWeek 3 Use the first full week of the year

Table A-4 Date formatting constants

Constant Value Description

vbGeneralDate 0	 Display a date and/or time. For real numbers, display a date and
time. If there is no fractional part, display only a date. If there is no
integer part, display time only. Date and time display is deter­
mined by your system settings.

vbLongDate 1 Display a date using the long date format specified in your com­
puter’s regional settings.

vbShortDate 2 Display a date using the short date format specified in your com­
puter’s regional settings.

vbLongTime 3 Display a time using the long time format specified in your com­
puter’s regional settings.

vbShortTime 4 Display a time using the short time format specified in your com­
puter’s regional settings.

Table A-5 Tri-state constants

Constant Value Description

vbUseDefault -2 Use default from your computer’s regional settings

VbTrue -1 True

VbFalse 0 False

Table A-6 Color constants

Constant Value Description

vbBlack &h00 Black

vbRed &hFF Red

vbGreen &hFF00 Green

vbYellow &hFFFF Yellow

vbBlue &hFF0000 Blue

vbMagenta &hFF00FF Magenta

Appendix A VBScript Documentation 445
Table A-6 Color constants

vbCyan &hFFFF00 Cyan

Constant Value Description

vbWhite &hFFFFFF White

VBScript Run-Time Errors
VBScript run-time errors result when your script attempts to perform an action that the system
cannot execute. The errors are called run-time errors because they happen while your script is
being executed. Run-time errors are listed in Table A-7.

Table A-7 Syntax error numbers and descriptions

Error Number Description

429 Microsoft ActiveX component can’t create object

507 An exception occurred

449 Argument not optional

17 Can’t perform requested operation

430 Class doesn’t support Automation

506 Class not defined

11 Division by zero

48 Error in loading the dynamic-link library (DLL)

5020

5019

Expected ‘)’ in regular expression

Expected ‘]’ in regular expression

432 File name or class name not found during Automation operation

92 For loop not initialized

5008 Illegal assignment

51 Internal error

505 Invalid or unqualified reference

481 Invalid picture

5 Invalid procedure call or argument

5021 Invalid range in character set

94 Invalid use of Null

448 Named argument not found

447 Object doesn’t support current locale setting

445 Object doesn’t support this action

438 Object doesn’t support this property or method

451 Object not a collection

504 Object not safe for creating

503 Object not safe for initializing

502 Object not safe for scripting

446 Appendix A VBScript Documentation
Table A-7 Syntax error numbers and descriptions

424 Object required

Error Number Description

91 Object variable not set

7 Out of memory

28 Out of stack space

14 Out of string space

6 Overflow

35 Sub or function not defined

9 Subscript out of range

VBScript Syntax Errors
VBScript syntax errors occur when the structure of one of your script statements violates one
or more grammatical rules that govern the use of the scripting language. VBScript syntax
errors occur during the program compilation stage, before the program has begun to be exe­
cuted, and are therefore sometimes referred to as compile time errors. Syntax errors are listed in
Table A-8.

Table A-8 Syntax error numbers and descriptions

Error Number Description

1052 Cannot have multiple default properties/methods in a class

1044 Cannot use parentheses when calling a subroutine

1053

1058

Class initialize or terminate does not have arguments

Default specification can only be on property Get

1057 Default specification must also specify ‘Public’

1005 Expected ‘(’

1006 Expected ‘)’

1011 Expected ‘=’

1021 Expected Case

1047 Expected Class

1025 Expected end of statement

1014 Expected End

1023 Expected expression

1015 Expected Function

1010 Expected identifier

1012 Expected If

1046 Expected In

1026 Expected integer constant

1049 Expected Let, Set, or Get in property declaration

Appendix A VBScript Documentation 447
Table A-8 Syntax error numbers and descriptions

Error Number Description

1045 Expected literal constant

1019 Expected Loop

1020 Expected Next

1050 Expected Property

1022 Expected Select

1024 Expected statement

1016 Expected Sub

1017 Expected Then

1013 Expected To.

1018

1027

Expected Wend

Expected While or Until

1028 Expected While, Until, or end of statement

1029 Expected With

1030 Identifier too long

1014 Invalid character

1039 Invalid Exit statement

1040 Invalid For loop control variable

1013 Invalid number

1037 Invalid use of Me keyword

1038 Loop without Do

1048 Must be defined inside a class

1042 Must be first statement on the line

1041 Name redefined

1051 Number of arguments must be consistent across properties specification

1001 Out of memory

1054 Property Set or Let must have at least one argument

1002 Syntax error

1055 Unexpected Next

1015 Unterminated string constant

FileSystemObject Object Model
Figure A-1 details the VBScript FileSystemObject object model.

448 Appendix A VBScript Documentation
Drive Object

Properties
AvailableSpace

DriveLetter
DriveType
FileSystem
FreeSpace

IsReady
Path

RootFolder
SerialNumber
ShareName

TotalSize
VolumeName

Drives Collection

Properties
Count
Item

TextStreamObject

File System Object

Set objFSO =
createobject(”scripting.filesystemobject”

File Object

Methods
Copy

Delete
OpenAsTextStream

Properties
Attributes

DateCreated
DateLastAccessed
DateLastModified

Drive
Name

ParentFolder
Path

ShortName
ShortPath

Size
Type

Methods
Close
Read

ReadAll
ReadLine

Skip
SkipLine

Write
WriteBlankLines

WriteLine

Properties
AtEndOfLine

AtEndOfStream
Column

Line

Methods
Copy

Delete
Move

OpenAsTextStream

Properties
Attributes

DateCreated
DateLastAccessed
DateLastModified

Drive
Files

IsRootFolder
Name

ParentFolder
Path

ShortName
ShortPath

Size
SubFolders

Type

Folders Collection

Methods
Add

Properties
Count
Item

Folder Object

Files Collection

Properties
Count
Item

Set objDrive = objFSO .GetDrive

Set objFile = objFSO .CreateFile

Set ob
jFile =

 ob
jFSO

 .g
etFile

Set colDrives = objFSO .Drives

Set objFile = objFSO .OpenTextFile

Set objFolder = objFSO .GetFolder

Set cdFiles = objFolder .files

Set colFolders = objFolder .subFolders

For Each objFile in cdFiles

Figure A-1 FileSystemObject object model

Appendix B

ADSI Documentation

For network administrators, one of the most frustrating aspects of using Active Directory Ser­
vice Interfaces (ADSI) is trying to match what is found in Active Directory Users And Comput­
ers with what is expected in a Microsoft Visual Basic, Scripting Edition (VBScript) script that
uses ADSI to manipulate Microsoft Active Directory directory service. Although it is possible
to use ADSI Edit to view the field names, reviewing Tables B-1 through B-20 in this appendix
will lessen some of your learning curve.

Computer Object Mapping
Tables B-1 through B-4 show computer object names displayed in the Active Directory Users
And Computers tool as they map to names available via ADSI scripting.

Table B-1 Computer Object General Property Tab

User Interface (UI) Label Active Directory attribute Comments

Computer Name (pre–Microsoft sAMAccountName
Windows 2000)

Domain Name System (DNS)
Name

dNSHostName

Role userAccountControl Toggles a bit in the
userAccountControl bitmask

Description description

Trust Computer For Delegation userAccountControl Toggles a bit in the
userAccountControl bitmask

Table B-2 Computer Object Location Property Tab

UI Label Active Directory Attribute

Location location

450 Appendix B ADSI Documentation
Table B-3 Group Object Member of Property Tab

UI Label
Active Directory
Attribute Comments

Member Of memberOf The member attribute of each of the groups in this list
contains the distinguished name of this computer object

Set Primary primaryGroupID
Group

Table B-4 Computer Object Location Property Tab

UI Label Active Directory Attribute

Name operatingSystem

Version operatingSystemVersion

Service Pack operatingSystemServicePack

Domain Object User Interface Mapping
Table B-5 shows user object names displayed in the Active Directory Users And Computers
tool as they map to names available via ADSI scripting.

Table B-5 Computer Object Location Property Tab

UI Label Active Directory Attribute

Domain Name (pre–Windows 2000) DC

Description description

Group Object User Interface Mapping
Tables B-6 though B-8 show group object names displayed in the Active Directory Users And
Computers tool as they map to names available via ADSI scripting.

Table B-6 Group Object General Property Tab

UI Label Active Directory Attribute

Group Name (pre–Windows 2000) sAMAccountName

Description description

E-Mail mail

Group Scope groupScope

Group Type groupType

Notes info

Appendix B ADSI Documentation 451
Table B-7 Group Object Member of Property Tab

UI Label
Active Directory
Attribute Comments

Member Of memberOf	 Contains the distinguished names of the groups to which this
group belongs. The member attribute of each of the groups in
this list contains the distinguished name of this group object.

The user interface does not directly modify the memberOf at­
tribute. It modifies the “member” attribute on the group ob­
ject of which this object is made a member. Active Directory
maintains the memberOf attribute.

Table B-8 Group Object Member Members Property Tab

UI Label
Active Directory
Attribute Comments

Members member Contains the distinguished names of the members of this
group object

Object Property Tab
Table B-9 shows object property names displayed in the Active Directory Users And Comput­
ers tool as they map to names available via ADSI scripting.

Table B-9 Group Object Member Members Property Tab

UI Label
Active Directory
Attribute Comments

Fully Qualified This is the object’s distinguished name in canonical form
Domain
Name of
Object

Object Class objectClass

Created whenCreated

Modified whenChanged

Update uSNChanged
Sequence
Numbers:
Current

Update uSNChanged
Sequence
Numbers:
Original

452 Appendix B ADSI Documentation
Organizational Unit User Interface Mapping
Table B-10 and Table B-11 show organizational unit object names displayed in the Active
Directory Users And Computers tool as they map to names available via ADSI scripting.

Table B-10 Organizational Unit (OU) General Property Tab

UI Label Active Directory Attribute Comments

Description description

Street street

City l The l attribute name is a lowercase L

State/Province st

Zip/Postal Code postalCode

Country/Region c This is a lowercase c

Table B-11 Organizational Unit (OU) General Property Tab

UI Label Active Directory Attribute Comments

Name managedBy

Manager Can Update n/a Changes the ownership to the
Membership List person named in the name

(managedBy) attribute

Office physicalDeliveryOfficeName

Street streetAddress

City l The l attribute name is a
lowercase L.

State/Province st

Country/Region c This is a lowercase c.

Telephone Number telephoneNumber

Fax Number facsimileTelephoneNumber

Appendix B ADSI Documentation 453
Printer Object User Interface Mapping
Table B-12 shows printer object names displayed in the Active Directory Users and
Computers tool as they map to names available via ADSI scripting.

Table B-12 Shared Folder Object General Property Tab

UI Label Active Directory Attribute

Location location

Model driverName

Description description

Color printColor

Staple printStaplingSupported

Double-Sided print DuplexSupported

Printing Menu printRate

Maximum Resolution printMaxResolutionSupported

Shared Folder Object User Interface Mapping
Table B-13 shows shared folder object names displayed in the Active Directory Users And
Computers tool as they map to names available via ADSI scripting.

Table B-13 Shared Folder Object General Property Tab

UI Label Active Directory Attribute

Description description

UNC Name uNCName

Keywords keywords

User Object User Interface Mapping
Tables B-14 through B-20 show user object names displayed in the Active Directory Users And
Computers tool as they map to names available via ADSI scripting.

Table B-14 User Object General Property Tab

UI Label Active Directory Attribute

First Name givenName

Last Name sn

Initials initials

Description description

Office physicalDeliveryOfficeName

Telephone Number telephoneNumber

Telephone: Other otherTelephone

454 Appendix B ADSI Documentation
Table B-14 User Object General Property Tab

E-Mail mail

UI Label Active Directory Attribute

Web Page wwwHomePage

Web Page: Other url

Table B-15 User Object Account Property Tab

UI Label Active Directory Attribute Comments

User logon name userPrincipalName LDAP = logonPrincipalName, which
prefixes the Logon Name drop-
down list and adds the full text to
the attribute

User logon name sAMAccountname
(pre–Windows 2000)

Logon Hours logonHours

Log On To logonWorkstation

Account Is Locked Out userAccountControl Toggles a bit in the
userAccountControl bitmask
(flag: UF_ACCOUNTSDISABLE)

User Must Change Password pwdLastSet
At Next Logon

User Cannot Change
Password

N/A This is the Change Password
control in the ACL

Other Account Options userAccountControl The remaining items in Account
Options toggle bits in the
userAccountControl bitmask
(flags in a DWORD)

Account Expires accountExpires

Table B-16 User Object Account Property Tab

UI Label Active Directory Attribute Comments

Street streetAddress

P.O. Box postOfficeBox

City l The l attribute name is a lowercase L
as in Locale

State/Province st

Zip/Postal Code postalCode

Country/Region c, co, and countryCode

Appendix B ADSI Documentation 455
Table B-17 User Object Account Property Tab

UI Label Active Directory Attribute Comments

Member Of memberOf

Set Primary Group primaryGroupID LDAP: Linked to primaryGroup
Token of the primary group

Table B-18 User Object Account Property Tab

UI Label Active Directory Attribute Comments

Title title

Department department

Company company

Manager: Name manager

Direct Reports directReports Back linked by Active Directory to
directReports

Table B-19 User Object Account Property Tab

UI Label Active Directory Attribute Comments

Profile Path profilePath

Logon Script scriptPath

Home Folder: Local Path homeDirectory If Local Path is selected, the local
path is stored in the homeDirectory
attribute

Home Folder: Connect homeDrive If Connect is selected, the mapped
drive is stored in the homeDrive
attribute

Home Folder: To homeDirectory If Connect is selected, the path is
stored in the homeDirectory
attribute

456 Appendix B ADSI Documentation
Table B-20 User Object Account Property Tab

UI Label Active Directory Attribute Comments

Home telephoneNumber LDAP: homePhone

Home: Other otherTelephone LDAP: otherHomePhone

Pager pager

Pager: Other pagerOther LDAP: otherPager

Mobile mobile

Mobile: Other otherMobile

Fax facsimileTelephoneNumber

Fax: Other otherFacsimileTelephone
Number

IP Phone ipPhone

IP phone: Other otherIpPhone

Notes info

Appendix C

WMI Documentation

Win32 Classes
Microsoft Windows classes give you the means to manipulate a variety of objects. Table C-1
identifies the categories of Windows classes.

Table C-1 WMI Log Files

File Description

Computer system hardware Classes that represent hardware-related objects

Operating system Classes that represent operating system-related objects

Installed applications Classes that represent software-related objects

Microsoft Windows Classes used to manage WMI
Management Instrumentation
(WMI) service management

Performance counters Classes that represent formatted and raw performance data

WMI Providers
The providers in Table C-2 can request information from and send instructions to
WMI objects.

Table C-2 WMI providers

Provider Description

Active Directory provider The Active Directory provider maps Microsoft Active Directory
directory service objects to WMI. By accessing the \Root
\Directory\LDAP namespace in WMI, the Active Directory provider
supplies WMI with access to information contained in Active
Directory.

Cooked Counter provider High-performance provider that is the preferred source of cooked
(calculated) data. Cooked data is the same data displayed in the
System Monitor. WMI supplies cooked classes such as
Win32_PerfFormattedData_PerfOS_Cache, which enable
applications to obtain cooked data for performance objects such
as the cache.

458 Appendix C WMI Documentation
Table C-2 WMI providers

Provider Description

DFS provider Supplies Distributed File System (DFS) functions that logically
group shares on multiple servers and link them transparently to a
tree-like structure in a single namespace.

Disk Quota provider Enables administrators to control the amount of data that each
user stores on a Microsoft Windows NT File System (NTFS) volume.

Event Log provider Provides access to data from the event log service to notifications
of events.

IP Route provider Supplies network routing information.

Job Object provider Provides access to data on named kernel job objects.

Performance Counter High-performance provider that is the preferred source of raw
provider performance data. WMI supplies raw classes such as

Win32_PerfRawData_PerfOS_Cache, which enable applications to
obtain raw performance data for performance objects such as the
cache.

Performance Monitoring Provider for cooked performance data.
provider

Ping provider Supplies WMI access to the status information provided by the
standard Ping command.

Policy provider Provides extensions to Group Policy and permits refinements in
the application of policy.

Power Management Event Supplies information to the Win32_PowerManagementEvent class
provider to describe power management events that result from power

state changes.

Security provider Retrieves or changes security settings that control ownership,
auditing, and access rights.

Session provider Manages network sessions and connections.

SNMP provider Maps Simple Network Management Protocol (SNMP) objects
defined in Management Information Base (MIB) schema objects to
WMI Common Information Model (CIM) classes. This provider is
not preinstalled.

System Registry provider Enables management applications to retrieve and modify data in
the system registry and receive notifications when changes occur.
This provider is not preinstalled.

Terminal Services provider WMI classes that you can use for consistent server administration
in a Terminal Services environment.

Trustmon provider Provides access information about domain trusts.

View provider Creates new instances and methods based on instances of other
classes.

WDM provider Provides access to the classes, instances, methods, and events of
hardware drivers that conform to the Windows Driver Model
(WDM).

Appendix C WMI Documentation 459
Table C-2 WMI providers

Provider Description

Win32 provider Provides access to and updates data from Windows systems such
as the current settings of environment variables and the attributes
of a logical disk.

Windows Installer provider Provides access to information collected from Windows Installer–
compliant applications, and it makes Windows Installer procedures
available remotely. On Windows Server 2003 this provider is not
preinstalled.

Windows Product Activation Supports Windows Product Activation (WPA) administration by
provider using WMI interfaces, and it provides consistent server

administration.

WMI Scripting API Objects
Table C-3 describes WMI scripting API objects and how they are used.

Table C-3 WMI scripting API objects

Object Description

SWbemDateTime Constructs and parses CIM date/time values.

SWbemEventSource Retrieves events in conjunction with SWbemServices.Exec
NotificationQuery.

SWbemLastError Provides extended error information when an error occurs.

SWbemLocator Obtains an SWbemServices object that can get access to WMI on a
particular host computer.

SWbemMethod Contains a single WMI method definition.

SWbemMethodSet Gets a collection of SWbemMethod objects.

SWbemNamedValue Contains a single named value.

SWbemNamedValueSet Gets access to a collection of SWbemNamedValue objects.

SWbemObject Contains and manipulates a single WMI object class or instance.

SWbemObjectEx Extends the functionality of SWbemObject. This object adds the
Refresh method for SWbemRefresher objects.

SWbemObjectPath Generates and validates an object path.

SWbemObjectSet Gets access to a collection of SWbemObject objects.

SWbemPrivilege Sets or clears a privilege.

SWbemPrivilegeSet Gets access to a collection of SWbemPrivilege objects.

SWbemProperty Contains a single WMI property.

SWbemPropertySet Gets access to a collection of SWbemProperty objects.

SWbemQualifier Contains a single property qualifier.

SWbemQualifierSet Gets access to a collection of SWbemQualifier objects.

460 Appendix C WMI Documentation
Table C-3 WMI scripting API objects

Object Description

SWbemRefresher Collects and updates object property values in one operation.

SWbemRefreshableItem Represents a single refreshable element in an SWbemRefresher
object, such as a property.

SWbemSecurity Manages security settings such as Component Object Model (COM)
Privileges, AuthenticationLevel, and ImpersonationLevel.

SWbemServices Creates, updates, and retrieves instances or classes.

SWbemServicesEx Extends the functionality of SWbemServices. This object adds the Put
and PutAsync methods to allow a class or instance to be saved to
multiple namespaces.

SWbemSink Receives the results of asynchronous operations and event
notifications, which are used by client applications.

WMI Log Files
Table C-4 lists the log files created by WMI and the WMI providers.

Table C-4 WMI Log Files

File Description

Dsprovider.log Logs information and error messages for the Directory Services provider.

Framework.log Traces information and error messages for the provider framework and the
Win32 provider.

Mofcomp.log Compiles details from the MOF compiler.

Ntevt.log Traces messages from the Event Log provider. This provider requires that
you set any bit value for the mask level in the system registry.

Setup.log Reports MOF files that failed to load during the setup process. However, the
error that caused the failure is not reported. You must review the Mof­
comp.log file to determine the reason for the failure. After the error has
been corrected, you can recompile the MOF file (using MofComp) with the
autorecover switch.

Viewprovider.log Traces information from the View provider based on the mask level you set
in the registry.

Wbemcore.log Reports wide spectrum of trace messages.

Wbemess.log Logs entries related to events.

Wbemprox.log Traces information for the WMI proxy server.

Wbemsnmp.log Traces information from the Simple Network Management Protocol
(SNMP) provider.

Winmgmt.log Traces information that is typically not used for diagnostics.

Wmiadap.log Reports error messages related to the AutoDiscoveryAutoPurge (ADAP)
process.

Wmiprov.log Manages data and events from WMI-enabled Windows Driver Model
(WDM) drivers.

Appendix C WMI Documentation 461
WMI Scripting Object Model
Figure C-1 illustrates the WMI Scripting Object Model.

Figure C-1 WMI Scripting Object Model

Locator
SWbemLocator

Service
SWbemServices

SWbemServicesEx

Event Source
SWbemEventSource

Sink
SWbemSink

Date/Time Helper
SWbemDateTime

Refresher
SWbemRefresher

Item in Refresher
SWbemRefreshableItem

CIM Object
SWbemObject

SWbemObjectEx

Security
SWbemEventSecurity

Object Path
SWbemObjectPath

Named Value
SWbemNamedValue

Privilege
SWbemPrivilege

Error Object
SWbemLastError

CIM Object Set
SWbemObjectSet

Method Collection
SWbemMethodSet

Property Collection
SWbemPropertySet

Qualifier Collection
SWbemQualifierSet

Privilege Collection
SWbemPrivilegeSet

Set of Named Values
SWbemNamedValueSet

 Set objLocator = CreatObject("WbemScripting.SWbemLocator")

 Set objWMIService = GetObject("winmgmts:\\")

 Set colItems = objWMIService.ExecNotificationQuery(wmiQuery)

 Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems

Set objSec = colItems.security_

Set colPriv =
colItems.security_.privileges

For Each objPriv In ColPriv
Set colMethods =objItem.methods_

Set colProperties =
objItem.Properties_

Set colQualifiers =
objItem.qualifiers_

Set objPath =
objItem.path_

Set objSink = CreateObject
("WbemScripting.SWbemSink")

Set objWMIDate = CreateObject
("WbemScripting.SWbemDateTime")

Set objRefresher = CreateObject
("WbemScripting.SWbemRefresher")

Set objRefresherItem =
objRefresher.AddEnum(objWMIService,

wmiQuery)

Set colNamedItems =
CreateObject("WbemScripting.SWbemNamedValueSet")

Set myItem = colNamedItems.Add("myValue","myNumber")

Appendix D

Documentation Standards

As network administrators begin to write many scripts, a need for standards becomes rapidly
apparent. Large companies commonly maintain a collection of enterprise scripts that have been
tested and approved for use as network tools. To ensure these scripts can be readily main­
tained, modified, and debugged, proper documentation must be included with them. This
appendix offers suggestions for what kind of information to include with these scripts.

Header Information Section
The following items should be considered for inclusion in the Header information section of
a script:

■	 Script name

■	 Script writer

■	 Date the script was written

■	 Version information

■	 Description of the purpose of the script

■	 Special requirements for use of the script (for example, command-line arguments and
access to Microsoft Active Directory directory service)

Reference Information Section
The following items should be documented in the Reference information section of the script:

■	 Use of all variables

■	 Use of all constants

464 Appendix D Documentation Standards
Worker Information Section
The following items should be documented in the Worker information section of the script:

■ Explanation of statements used to gather information

■ Explanation of statements used to configure settings

■ Explanation of any other statements used in the script

Output Information Section
The following items should be documented in the Output information section of the script:

■ Explanation of where the data is coming from

■ Explanation of how the data is built

■ Explanation of where the calling procedure is

■ Explanation of any worker elements used in formatting the output

Sample of Documentation Use
The following script illustrates how you might include the elements described in the previous
sections of this appendix to fully “document” a script. Although documenting a script does
add considerably to its length, it also makes the script easier to understand when you need to
modify it at a later date.

' +++

' Written by Ed Wilson, 7/13/2006' version 1.0 basic script

' version 1.1 -- added additional documention, 1/14/2006

' Key concepts are listed below:

' This script displays various Computer Names by reading

' the registry

' ++

Option Explicit

On Error Resume Next

Dim objShell 'holds connection to wscript.shell

Dim regActiveComputerName 'holds registry string for

'active computer name

Dim regComputerName 'holds registry string for computer name

Dim regHostname 'holds registry string for hostname

Dim ActiveComputerName 'holds value found in registry

Dim ComputerName 'holds value found in registry

Dim Hostname 'holds value found in registry

regActiveComputerName = "HKLM\SYSTEM\CurrentControlSet" & _

"\Control\ComputerName\ActiveComputerName\ComputerName"

Appendix D Documentation Standards 465
regComputerName = "HKLM\SYSTEM\CurrentControlSet\Control" & _

"\ComputerName\ComputerName\ComputerName"

regHostname = "HKLM\SYSTEM\CurrentControlSet\Services" & _

"\Tcpip\Parameters\Hostname"

Set objShell = CreateObject("WScript.Shell") 'provides access to regRead

ActiveComputerName = objShell.RegRead(regActiveComputerName)

ComputerName = objShell.RegRead(regComputerName)

Hostname = objShell.RegRead(regHostname)

'WScript.Echo is simple output. The output variables are assigned value in

'the worker section due to the regRead method.

WScript.Echo activecomputername & " is active computer name"

WScript.Echo ComputerName & " is computer name"

WScript.Echo Hostname & " is host name"

Variable Naming Conventions
In most cases, you can name a variable whatever you wish. You can call it a,b,c or you can call
it myVariable … it really does not matter. This being the case, it makes good sense to use a vari­
able that might actually help you to understand the code you have just written. If your code
creates an object, then use a prefix that will let you know the variable contains an object. Then
if you get a type violation, it will be easier to troubleshoot. See Table D-1 for variable naming
standards.

Table D-1 Variable Naming Standards

Prefix Sample Use

obj objFSO Contains an object

int intCount Contains an integer

str strName Contains a string

bln blnEnabled Contains a Boolean value

ary aryUsers Contains an array

col colItems Contains a collection

sub subLoggging The name of a subroutine

fun funLine The name of a function

dtm dtmLastAccessed Contains a date

466 Appendix D Documentation Standards
If we expand upon this naming convention, we can arrive at a select number of common vari­
ables that would be used in the vast majority of scripts we write for use in the enterprise.
Doing so will greatly simplify the reading and the adapting of scripts produced in the same
organization. Consider Table D-2:

Table D-2 Standard Variables

Variable Meaning How Created

objFSO The file system object scripting.filesystemobject

objFolder Folder object objFSO.GetFolder

colFiles Collection of files objFolder.files

objFile File object For each objFile in colFiles

objShell WshShell object WScript.shell

objNetwork WshNetwork object WScript.network

objWMIservice SwbemServices object winmgmts:\\

dtmTime Date variant Contains a time stamp

Appendix E

Special Folder Constants

The DisplayAdminTools.vbs script presented in Chapter 1, “Starting from Scratch,” relies
upon what are called shell special folder enumerated types. Although they are detailed in the
Platform SDK, they can be a little hard to find in those documents. Due to the power of the
DisplayAdminTools.vbs script, and its usefullness in the day-to-day life of network administra­
tors (for both reporting purposes and for troubleshooting), I am including all the special
folder constants in Table E-1.

Table E-1 Special folder constant values

Special Folder Name Value In Hex Value in Decimal

Admintools 0x30 48

Altstartup 0x1d 29

Appdata 0x1a 26

Bitbucket 0xa 10

Cdburn_area 0x3b 59

Common_admintools 0x2f 47

Common_altstartup 0x1e 30

Common_appdata 0x23 35

Common_desktopdirectory 0x19 25

Common_documents 0x2e 46

Common_favorites 0x1f 31

Common_music 0x35 53

Common_pictures 0x36 54

Common_programs 0x17 23

Common_startmenu 0x16 22

Common_startup 0x18 24

Common_templates 0x2d 45

Common_video 0x37 55

Controls 0x3 3

Cookies 0x21 33

Desktop 0x0 0

468 Appendix E Special Folder Constants
Table E-1 Special folder constant values

Special Folder Name Value In Hex Value in Decimal

Desktopdirectory 0x10 16

Drives 0x11 17

Favorites 0x6 6

Fonts 0x14 20

History 0x22 34

Internet 0x01 1

Internet_cache 0x20 32

Local_appdata 0x1c 28

Mydocuments 0x0c 12

Mymusic 0x0d 13

Mypictures 0x27 39

Myvideo 0x0e 14

Nethood 0x13 19

Network 0x12 18

Personal 0x5 5

Printers 0x4 4

Printhood 0x1b 27

Profile 0x28 40

Profiles 0x3e 62

Program_files 0x26 38

Program_files_common 0x2b 43

Programs 0x2 2

Recent 0x8 8

Sendto 0x9 9

Startmenu 0xb 11

Startup 0x7 7

System 0x25 37

Templates 0x15 21

Windows 0x24 36

Index

A
Access database, ADO to query, 308–309
Active Directory

changes to, 257

connect to, 252, 293–297

control script execution while querying, 312–314

create ADO query into, 311–312

fill out profile tab in, 279

limit search, 300

modify user properties in, 270

objects used to search, 297

organizational attributes in, 282

schema cache, 350

search, 294

Sysvol share in, 352

telephone tab attributes in, 280

in Windows Server 2003, 298

Active Directory Migration Tool (ADMT), 253

Active Directory Schema MMC, 303–304

Active Directory Service Interfaces (ADSI)

binding, 256–257

create computer account, 261–262

create groups in, 260–261

create multiple users, 280–281

create users with, 258–262

creating multi-valued users, 265–267

delete users, 287–290

Edit snap-in, 254

event log, 290–291

Flag property, 298

general user information, 270–271

IADsContainer, 256

LDAP names, 255

merge WMI and, 322–323

modify organizational settings, 281–282

modify terminal server settings, 283–287

modifying address tab information, 274–282

Output information, 257–258, 273

provider, 253–254

Reference information, 253–254, 272

user profile settings, 278

user telephone settings, 279–280

Worker information, 255–256, 272–273

working with, 251–257

working with users, 269–273

See also Active Directory

Active Directory Users and Computers (ADUC), 270,

274

ActiveX Data Objects (ADO)
create effective queries, 297–299
Global Catalog server, 303–311

Header information, 295

Output information, 296–297, 301–303

Reference information, 295, 301

search for specific types of objects, 299–303

search properties, 298–299

to query Access database, 308–309

to query Excel spreadsheet, 307–308

to query text file, 309–311

WMI-network connection, 316–317

Worker information, 296–297

Address tab

mappings, 275

modify information on, 274–282

Output information, 277–282

Reference information, 275

Worker information, 275

ADO. See ActiveX Data Objects

ADouWMIDHCP.vbs, 322–323

ADsDSOObject provider, 296, 319

ADSI. See Active Directory Service Interfaces

Adsldp.dll file, 349

ADSystemInfo interface, 356

Ampersand (&), 5, 12, 68, 89

Angle brackets (<>), 295

appActivate method, 49

ArgComputerService.vbs, 87–88, 90

Arguments

command-line, 81–83

multiple, 86–89

named, 85, 90–93

passing, 81, 103–107

"subscript out of range," 84

supply value for missing, 85–86

unnamed, 85–86

Array

building, 107–111

command-line arguments, 81–83

create, 93

defined, 93

detecting properties, 210–211

Join function and, 357

moving past dull, 95–100

passing arguments, 81, 103–107

tell me your name, 89–93

two-dimensional, 101–103

using multiple arguments, 86–89

working with, 93–95

ArrayReadTxtFileUBound.vbs, 98

ArrayReadTxtFile.vbs, 95–98

ASCII, 49

atEndOfStream, 59

469

470 Attribute indexing

Attribute indexing, 304–305

Attributes, query multiple, 302–303

Automatic cleanup, 172–174

Automation objects, 10

B
Backup window, 176

BasicArrayForEachNext.vbs, 94–95

BasicArrayForNext.vbs, 94

BasicQuery.vbs, 294–295

BindFolder.vbs, 175

Binding, 256–257

Binding string, 256–257

BIOSVersion property, 209–210

Business rules, 331

C
Capitalization, WMI properties and, 231

Capture error, 360

Carriage return, 61

Case sensitive, ADSI provider names as, 253

Change method, 200

CheckArgsPingMultipleComputers.vbs, 84–85

CheckNamedArgCS.vbs, 93

CheckServiceStatus.vbs, 99–100

CIM_Component class, 396

CIM_ElementSetting class, 396

CIM_LogicalDevice class, 200

CIM_ManagedSystemElement class, 395

CIM_Setting class, 395–396

CIMSettingClass.vbs, 397–398

Cleanup, automatic, 172–174

CmdDir.vbs, 369

CollectionOfDrivers.vbs, 26–27

Collections, 29–30

Command-line arguments

create user error message, 84–86

defined, 81–86

implement, 82

modify, 82–83

no arguments, 84

run from command prompt, 83

Command-line syntax, 90

Command object, 297

Command prompt, run command-line arguments from,

83

Comment, 13

Common classes, 194

Common name (cn), 259

Computer account, create, with ADSI, 261–262

ComputerRoles.vbs, 70–71, 76–79

comspec variable, 368–369

Concatenation, 5, 12, 68, 89

Connection object, 297–297

ConnectToADOU.vbs, 316–317
Constants

benefits of, 28–29

defining, 27

vs. variables, 27–29

Consumers, WMI, 188

Continuation character, 89

CopyFolderExtended.vbs, 176–177

CopyFolder.vbs, 176

Core classes, 194

Count method, 94

Country codes, ISO 3166-1, 276

CPUTypeStarter.vbs, 74

CPUType.vbs script, 64–66, 74–79

CreateAddRemoveShortCut.vbs, 50

CreateBasicFolder_checkFirst.vbs, 175

CreateBasicFolder.vbs, 166

CreateMultiFolders.vbs, 166

automatic cleanup, 172–174

Header information, 167

Output information, 167–168

Reference information, 167

Worker information, 167–168

CreateObject command, 165–167, 172, 296–297, 319

CreateOU.vbs, 252–253, 255–256

CreateRegKey.vbs, 373–374

CreateShortCut method, 49–50

CreateSite.vbs, 399–401

CreateUser.vbs, 258–259

CreateUsersLogAction.vbs, 332–334

Creating a literal, 27

CScript, 6, 12, 21–22, 41

Cscript.exe, 13

.csv file, 236

D
Database corruption, WMI, 419

Dataset, 201

DCOM security, 432

Defaults, accepting WMI, 208–214

Definitive software library (DSL), 355

DeleteBasicFolder.vbs, 172

DeleteMultiFolders.vbs, 173–174

DeleteRegKey.vbs, 377

DeleteUser.vbs, 288–289

Dependencies, 421

DHCP, 76

Diagnostic information, obtain, 426–432

Dim command, 6–7, 17–19, 27–28, 93–94, 108

variables announced by, 32–33

DisplayAdminTool.vbs, 4

DisplayComputerNames.vbs, 5–6, 19, 59–61

DisplayComputerNameWithComments.vbs, 13–14

DisplayProcessInformation.vbs, 31–33

DisplayWPAStatus.vbs, 201–203

funfix function 471

Distinguished names, 255–256
Distributed Component Object Model (DCOM) security

issues, 419

DNS domain name of currently logged-on user, 15

Do…Loop command, 47

DoLoopMonitorForProcessDeletion.vbs, 47

Do Until...Loop, 333

Do Until loop, 97–98, 110

defined, 43

Header information, 44

Reference information, 44

worker and output information, 45–46

Do Until…Next command, 97–98
Do While...Loop command, 37–43

difference between Do Until and, 46

Header information, 38–39

Output information, 40–43, 59, 61

Reference information, 39–40

Worker information, 40–43, 59, 61

Do While True, 41, 47

Domain components (DCs), 259

Domain name, 259

DSL. See Definitive software library

Dull arrays, 95–100

Dynamic classes, 194

Dynamic Host Configuration Protocol (DHCP), 320–

321

E
Echo command, 12, 49, 176

EnableDHCP.vbs, 320–321

Encrypt Password property, 298

End If command, 46, 56, 61, 93

End Select, 74

End Sub command, 191

Err tool, 429–430

output from, 434

Error handling process, 7

Error message, create useful, 84–86

Error object, 297

Errors, WMI, common sources of, 419–420

Event log, 290–291

Excel spreadsheet, ADO to query, 307–308

Exchange 2003, 407–418

connect to MicrosoftExchangeV2, 408–409

Exchange_FolderTree, 413–414

Exchange_Logon, 414–416

Exchange_Mailbox, 416–418

Exchange_QueueSMTPVirtual

Server, 409

Header information, 409–410

MicrosoftExchangeV2 namespace, 407

Output information, 410–411

public folders, 411–413

Worker information, 410

Exchange WMI namespace, changes to, 407–408

ExchangeFolderTree.vbs, 413–414

ExchangePublicFolders.vbs, 411–413

ExchangeSMTPQueue.vbs, 409–410

Exec method, 49–50

Exists method, 92

Exit Do, 41

ExpandEnvironmentStrings method, 49

F
Field object, 297

FileSystemObject class, 44, 165, 167, 172

CopyFolder method, 176

folders and, 174–175

MoveFolder method, 179

OpenTextFile method, 171

Filter command, 108

FilterComputers.vbs, 300

Filtered print monitor, 386–388

FilterPrinterStatus.vbs, 386–387

Firewall issues, 420

Folders, 165–172

binding to, 174–175

check on existence of, 175

copying, 176–179

create, 182–183

create basic, 165–166

create multiple, 166

create programmatically, 173

delete, 172–174, 184

listing sizes, 177–178

moving, 178–181

For Each...Next, 72, 94

defined, 26

Header information, 27–30

Reference information, 30

step-by-step exercises, 51–52

Worker information, 30–31

formatNumber function, 41–43, 62, 177

For...Next, 31–37, 94, 97–98, 102–103

CreateObject code with, 168

Header information, 32–33

Reference information, 33–34

worker and output information, 34–37

ForReading constant, 44, 57, 96, 110

ForWriting constant, 57

FSOTemplate.vbs, 177

funComputerRole function, 72–74

Functions

add, to convert to megabytes, 342

compare intrinsic and user defined, 342–343

working with, 341–343

funfix function, 287

472 GetCommentsTimed.vbs

G
GetCommentsTimed.vbs, 60

GetComments.vbs, 56–57, 59

GetStringValue, 375

Global Catalog server, 303–311

query, 305–306
Group

add to logon script, 360–362
create, with ADSI, 260–261

Group Policy Objects (GPOs), 352

Group Policy server, 15

H
Header information

ADO, 295

create users log, 335

create Web sites, 400–401
CreateMultiFolders.vbs, 167

Do Until...Loop, 44

Do While...Loop, 38–39
EnableDHCP, 321

Exchange 2003, 409–410
For Each...Next, 27–30
For...Next, 32–33
If Then, 57

If...Then...Elself, 64–65, 85

IIS 6.0 connection, 397–398
logon scripts, 354–355
modify, 15–16
monitor printer status, 383–384
move past dull arrays, 96

multiple arguments, 88

reasons for, 5–6
registry connection, 371

registry key, 374

script, 5–9, 16–18
Select Case, 71

two-dimensional arrays, 102

WMI query, 228–229
WMI script, 202

WMI-network connection, 317–318

Hierarchical namespace, 188–191
Hotfix information, retrieving, 204–205

I

IADsADSystemInfo interface, 349–351

IADsContainer, 256

If...Then, 41, 46, 55–62, 93, 106

Header information, 57

Reference information, 57–58
Worker and Output information, 58–62

If...Then...Else, 67–69
If...Then...Elself

Header information, 64–65

Reference information, 65

use, 62–63

Worker and output information, 65–67

ifThenElse.vbs, 68

If...Then End if, 61–62

IfThen.vbs script, 55–56

IIS 6.0

back up metabase, 403–404

connection, 397–399

create Web site, 399–402

import metabase, 404–406

locate WMI classes for, 395–397

IlsStructuredDataClass class, 396

Impersonation levels, 214–215

InformativeWMI.vbs, 245–247

Infrastructure, WMI, 188

Inputbox search, 197

InStr command, 45–46

InStr function, 60

Intelligence, adding, 55–79

Internet Protocol (IP) address, 51, 252

Intrinsic constants, 61

IP. See Internet Protocol (IP) address

ISO 3166, 276

J
Join function, 210, 357

JScript, 13

K
Key properties, 232–233

L
LBound, 97

LDAP names, 255

LDAP provider, 253–254, 316

Lightweight Directory Access Protocol (LDAP), 270

Linear scripting, 329

LinearScript.vbs, 330–331

Line concatenation, 5. See also Concatenation

Line continuation, 5, 89

Line feed, 61

ListClassMethods.vbs, 199–200

ListClassProperties.vbs, 198

ListName_Only_AllShares.vbs, 231

ListName_Path_Max_Shares.vbs, 232

ListShares.vbs, 228, 230–231

ListSpecificGreaterThanShares.vbs, 228–241

ListSpecificShares.vbs, 237–238

ListSpecificWhereVariableShares.vbs, 241–242

ListWMIClasses.vbs, 194–195

ListWMINamespaces.vbs, 189–191

ListWMIProviders.vbs, 192–193

Open command prompt, dragging and dropping .vbs file to 473

Local computer, IADsADSystemInfo interface and, 349

LogEvent method, 49, 291

Logging

add to logon script, 362–364

service accounts, 239–241

use subroutine to perform, 343–345

verbose WMI, 427

WMI, 433–437

Logging subroutine, 234–237, 336–338, 345–347
Logon script

add group to, 360–362

add logging to, 362–364

deploy, 352–358

Header information, 354–355

IADsADSystemInfo interface, 349–351

Output information, 358–360

Reference information, 355–356

use, 351

Worker information, 357–358

WshNetwork class, 356

LogonScript.vbs, 353–358

Loop counter, 103

Loop Until, 46

M
Machine boot configuration, WMI moniker to display,

221–222

Managed Object Format (MOF) format, 425

Metabase

back up IIS 6.0, 403–404

import IIS 6.0, 404–406

Methods
defined, 10–11
WMI, 199–200

Microsoft Excel, 21

.csv file opens, 236

Microsoft Exchange 2000 domain information, 15

Microsoft Management console (MMC), 254

Microsoft Windows Me, 15

Microsoft Windows 95, 15

Microsoft Windows 2000, 15

Microsoft Windows XP, 15

MicrosoftDNS namespace, 188

MicrosoftExchangeV2 namespace, 407

MicrosoftIISv2 namespace, 396–397

Millions of instructions per seconds (MIPS), 66

ModifyTerminalServerProperties.vbs, 284–285

ModifyUserAddressTab.vbs, 274–275

ModifyUserProperties.vbs, 270–273

MOF files, compiling, 437–439

MofComp.exe, 430–431, 437–439

Moniker, 190. See also WMI moniker

MonitorForChangedDiskSpace.vbs, 38, 47

MonitorPrinterStatus.vbs, 383–384

MonitorPrintQueue.vbs, 388–389

MoveFolder.vbs script, moving, 179

MrEd OU, 254

MsgBox, 12

msgBox function, 180

msgBox.vbs script, 63

Multiple users, create, 280–281

N
“Name redefined” error, 331

Named arguments, 85, 90–93

NamedArgCS.vbs, 91–92

Namespace

default, 190

defined, 189–191

Exchange WMI, 407

WMI, 189–191

Naming convention, Lightweight Directory Access Proto­
col (LDAP), 270

NDS provider, 253

Networking components

change TCP/IP settings, 320–321

merge WMI and ADSI, 322–323, 326–327

Win32_NetworkAdapterConfiguration, 323–325

WMI and, 315–320, 325–326

Next command, 35

Notepad

add, to SendTo menu, 22

CScript, 21

drag and drop .vbs file to, 21

use, to speed script modification, 17

Now command, 35, 176–178

Null string, 46

numLoop, 103

NWCOMPAT provider, 253

nwtraders.msft, 254

O
Object

create additional, 48–51

defined, 10–11

search for specific types of, with ADO, 299–303

select specific properties from, 236

WMI, 189–191

objectCategory attribute, 299

ObjTxtFile, 96–97

On Error Resume Next, 27–28

benefit of, 229

function of, 6–8

If Then, 56

with ListShares.vbs, 228

logon script and, 353, 354

turn off during development, 7, 32–33

Open command prompt, dragging and dropping .vbs

file to, 21

474 OpenTextFile command

OpenTextFile command, 59

Operator

VBScript, 238–239
WMI query using, 238–241

Option Explicit
first line of script, 6–7, 27–28, 32–33, 38–39, 41, 44

as spelling checker, 38–39

Organizational settings, modify, 281–282
Organizational unit (OU) structure, 251, 263–265
Output information

ADO, 296–297, 301–303

ADSI, 257–258, 273

ADSI address tab script, 277–282

create ADSI users, 260–262

create users log, 336–341

create Web sites, 402

CreateMultiFolders.vbs, 168

Do Until...Loop, 45–46

Do While...Loop, 40–43, 61

EnableDHCP, 321

Exchange 2003, 410–411

filtered print monitor, 387, 389

For Each...Next, 102–103

For...Next, 34–37

If…Then, 58–62

If...Then...Else, 68–69

If...Then...Elself, 65–67

IIS 6.0 connection, 399

logon scripts, 358–360

modify, 19–22

monitor printer status, 385

move past dull arrays, 96–97

registry connection, 371–372

registry key, 374–375

script, 12–13, 19–22

Select Case, 72–74

two-dimensional arrays, 102–103

using multiple arguments, 88

WMI moniker, 209

WMI query, 229–230

WMI script, 203

overwriteFiles constant, 176

P
Parameter object, 297

Pascal-cased, Windows NT as, 253

Passing arguments, 81, 103–107

Password property, 298

Ping script, modify, 52–53

PingMultipleComputers.vbs, 83

Ping.vbs script, 82–83

Platform SDK, defined privileges in, 215–216

PopUp method, 49

Printers
check status of print server, 391–392
create filtered print monitor, 386–388
monitor print queues, 388–391
obtain status of, 382–385
Win32_Printer, 381–382

Privilege strings, 216

Processes, Taskmanager.exe view of, 338

Properties

defined, 10–11

detecting array, 210–211

list running, 233–234

select specific, from object, 236

Terminal Server setting, 282–283

Win32_Share, 229–230

WMI, 197–199

Property object, 297

Provider, security issues, 419

Put command, 273, 276

Put method, 260

Q
Query

Global Catalog server, 305–306
security event log, 216–219
WMI, 201–204

Quotation marks, WMI query in, 217

R
ReadHotFixes.vbs, 370–372

ReadTextFile.vbs, 43

RecordSet object, 297–297

Reference information, 39–40

ADO, 295, 301

ADSI, 253–254, 272

ADSI address tab script, 275

create ASDI users, 259

create users log, 335–336

create Web sites, 401–402

CreateMultiFolders.vbs, 167

Do Until...Loop, 44

EnableDHCP, 321

filtered print monitor, 387

For Each...Next, 30

For...Next, 33–34

If Then, 57–58

If...Then...Elself, 65

IIS 6.0 connection, 398–399

logon scripts, 354–356

modify, 16–18

monitor printer status, 384

move past dull arrays, 96

purpose of, 9

registry connection, 371–372

Structured Query Language 475

registry key, 374–375

script, 8–9, 16–18

Select Case, 71–72

two-dimensional arrays, 102

using multiple arguments, 88

WMI moniker, 208–209

WMI query, 229

WMI script, 202–203

WMI-network connection, 318

R
RegDelete method, 49

Registry

back up of, 367–380
connect to, 370–372
create registry keys, 373–375
create WshShell Object, 368–369
creating keys, 378–379
delete information, 376–377
read using WMI, 377–378
StdRegProv class, 372–373
writing to, 375–376

Registry Editor, Copy Key Name feature, 9

Registry key, 7–9 12

RegRead method, 49

RegWrite method, 49

Relative distinguished names (RDNs), 255

Replace dialog box, 18–19

Resources, WMI, 188

Resultant Set of Policy information, 188

RetrieveComputerSystem.vbs, 426

RetrieveWMISEttings.vbs, 425–426

ROUND function, 60

RSOP namespace, 188

Run method, 48–49

RunNetStat.vbs script, 50–51

Running properties, list, 233–234

Runtime engines, 13

S
SBSQueryHotFix.vbs, 205

Script(s)

add documentation to, 13–14
add power to, 25–48

Do...Loop, 47

Do Until...Loop, 43–46

Do While...Loop, 37–43

For Each...Next, 26–31

For...Next, 31–37

While...Wend, 47–48

defined, 4

documenting, 355

embedding, in Web pages, 21

enhancing, 13–14

ensure correct path information for, 254

header information, 5–8, 15–16

how to run, 20–22

modify, 14–22

open existing, 4

output information, 12–13, 19–22

prevent choking, 13

promote code re-use within, 331

reference information, 8–9, 16–18

run, with named arguments, 92–93

run existing, 4

step-by-step exercises, 22–23

use Notepad to speed modification, 17

useful registry keys, 15

worker information, 9–11, 18–19

See also entries for individual scripts

Scripting interface, troubleshoot, 425

Scriptomatic, 422

Security event log, query, 216–219

Security issues

Distributed Component Object Model (DCOM), 419

provider, 419

Security permissions, modifying WMI moniker to

include additional, 222–223

Security settings, WMI moniker, 214–220
Select Case statement, 69–74

Header information, 71

in logon script, 357–358

modify CPUType.vbs, 74–77

Output information, 72–74

Reference information, 71–72

Worker information, 72–74

sendKeys method, 49

SendTo menu, add Notepad to, 22

Server authenticated currently logged-on user, 15

ServersAndServices text file, 97–98

Service accounts

identifying, 239

logging, 239–241

Service dependencies, 421

Service information, 15

Services, Taskmanager.exe view of, 338

Set command, 58–59, 91

SetInfo command, 273

SetPowerState method, 200

SetStringValue, 375

Simple Mail Transfer Protocol (SMTP) address, 252

Single dimension array, 97

Sleep command, 36

SmallBIOS.vbs, 208

Space () command, 35–36

Spacing, WMI properties and, 231

specialFolders method, 170

Spelling, 19, 38–39. See also Option Explicit

Split function, 106–107

SQL. See Structured Query Language (SQL)

476 StartTime function

StartTime function, 40

StdRegProv class, 372–373

StopService method, 46, 200

Structured Query Language (SQL), 210, 231

subCheckArgs subroutine, 86, 106

subLogging subroutine, 170–171

subRecursiveFolders subroutine, 180–181

Subroutine, 329–341

defined, 48, 191

call, 331–332

create, 332

create users and log results, 332–334

defined, 329

logging, 234–237, 345–347

use to perform logging, 343–345

SubRoutineScript.vbs, 331–332

"Subscript out of range," 84

subtree modifier, 295

SysInfo.vbs, 350

Sysvol share, in Active Directory, 352

T
TCP. See Transmission Control Protocol (TCP)

TCP/IP. See Transmission Control Protocol/Internet Pro­

tocol (TCP/IP)

Telephone settings, user, 279–280

"Tell me everything about everything" script, 227

Terminal Server settings, modify, 282

Text file

ADO to query, 309–311
array, combine WMI and, 98

Time zone, echoing, 205

Timer function, 41–43, 60

TimeZoneSolution.vbs, 205

Transact-SQL (T-SQL), 210

Transmission Control Protocol (TCP), 51

Transmission Control Protocol/Internet Protocol (TCP/

IP), 76

Transmission Control Protocol/Internet Protocol (TCP/

IP) address, 319–321

Troubleshoot WMI scripting

general steps, 432–433
identify the problem, 419–420
obtain diagnostic information, 426–432

err tool, 429–430

MofComp.exe, 430–431

verbose WMI logging, 427–432

WMI log files, 428–429

WMIcheck, 431

test local WMI service, 420–424

dependencies, 421

scriptomatic, 422

service status, 422

WBEMtest.exe, 423–424
WMI Control tool, 420

test remote service, 424–425

test scripting interface, 425–426

Two-dimensional arrays, 101–103

Type mismatch error, 209

U
UBound, 94, 97–99

Underscore character, 89

Universal Naming convention (UNC) path, 176, 358

Unnamed arguments, 85–86

User ID property, 298

User name, used to log on to domain, 15

User profile settings

ADSI, 278

Terminal Server, 285–287

User telephone settings, 279–280

UserAccountControl, 262–263

Users, delete, using ADSI, 287–290

User’s home directory, 15

V

Variable(s)

benefits of, 28–29

constants vs., 27–29

declare, 6–7

defined, 6

standard names, 335

tables of, 355

VB.NET, 7

vbNewLine command, 35–36

.vbs file, 21

VBScript, 6–7, 13

double-check, 20

to learn about WMI, 224

logon script, 353–358

operators, 238–239

subroutines in, 330

Verbose WMI logging, enable, 427

VideoAdapterRAM_HardCoded.vbs, 341

W
WBEM repository, 432

WbemPrivilege, 215–220

WBEMtest.exe, 423

Web page, embedding script in, 21

Web sites, use WMI to create, 399–402

whenTest.exe utility, 65

Where clause, 241–244

While Not Wend construction, 296, 316, 319

While Not...Wend loop, 322

While...Wend, 47

WmiTemplate.vbs template 477

WhileWendLoop.vbs script, 47–49

Win32_Environment, to learn about WMI, 224

Win32_NetworkAdapterConfiguration, 323–325

Win32_Printer, 381–382

Win32Printer class, use filter on, 386

WIN32Processor, SetPowerState method, 200

Win32_Share properties, 229–230

Win32WindowsProduct Activation, properties of, 203–

204

Windows 2000, OS version build number, 420

Windows Management Instrumentation (WMI), 422

accepting defaults, 208–214
alternate ways to connect to, 212

classes, 194–200
combine text file and, 98

connection string, 223

consumers, 188

create Web sites, 399–402
DCOM security, 432

Do Until...Loop, 45–46
Do While...Loop, 40–43, 61

echoing the time zone, 205

enable DHCP using, 320–321
For Each...Next, 26–27, 30–31, 102–103
For...Next, 34–37
If Then, 58–62
If...Then...Elself, 65–67
infrastructure, 188

Key property in, 232–233
listing providers, 192–193
merge ADSI and, 322–323
methods, 199–200
modify, 18–19
module registration, 432

moniker security settings, 214–220
move past dull arrays, 96–94
namespaces, 189–191
network and. See WMI-network connection
objects, 189–191
properties, 197–199
query, 201–204, 227–247. See also WMI query
read registry using, 377–378
resources, 188

retrieving Hotfix information, 204–205
script, 9–11
Select Case statement and, 70–71
service information, 198–199
service settings, 432

strComputer variable and, 64

troubleshoot, 420–439
two-dimensional arrays, 102–103
understanding the model, 188

use subroutine to retrieve service information from,

338–341
using multiple arguments, 89

using VBScript to learn about, 224

using Win32_Environment to learn about, 224

WBEM repository, 432

Windows NT, as Pascal-cased, 253

Windows Product Activation (WPA) information, 203–

204

Windows Scripting Host (WSH), 12–13, 21, 84–86

Windows Server 2003

Active Directory in, 298

OS version build number, 420

WMI in, 187–206

WMI namespaces in, 190

Windows XP

OS version build number, 420

WMI namespaces in, 189

winmgmts, 202–203

WinNT provider, 253

WMI. See Windows Management Instrumentation

(WMI)

WMI CIM Studio tool, 233

WMI classes, locate, for IIS 6.0, 395–397

WMI Control tool, 420, 424–425, 427

WMI database corruption, 419

WMI errors, common sources of, 419–420

WMI log files, 428–429

WMI logging, 433–437

WMI moniker

additional security permissions, 222–223

alternate ways of configuring, 207

default, 220

to display machine boot configuration, 221–222

winmgmts as, 202–203

See also Moniker

WMI namespace, changes to Exchange, 407

WMI object browser, 213

WMI Platform SDK, 73

WMI query

choosing specific instances, 237–238

Header information, 228–229

obtaining more direct information, 245–247

Output information, 229–230

in quotation marks, 217

Reference information, 229

selecting multiple properties, 231–237

selective data from all instances, 230–231

"tell me everything about everything", 227

using an operator, 238–241

Where clause, 241–244

Worker information, 229–230

WMI Query Language (WQL), 210, 231

WMI script, writing informative, 244

WMI service, test local, 420–424

WMIcheck, 431–432

WMI-network connection, 316–319

WmiTemplate.vbs template, 242

478 Worker information

Worker information, 272–273
ADO, 296–297
ADSI, 255–256
ADSI address tab script, 275–277
create ADSI users, 259–260
create users log, 336
create Web sites, 402
CreateMultiFolders.vbs, 167
EnableDHCP, 321
Exchange 2003, 410
filtered print monitor, 389
IIS 6.0 connection, 399
logon scripts and, 357–358
monitor printer status, 384–385
registry connection, 371–372
registry key, 374–375
WMI moniker, 209
WMI query, 229–230
WMI script, 203
WMI-network connection, 318–319

WorkWith2DArray.vbs, 101–102
WPA. See Windows Production Activation (WPA) infor­

mation
WQL. See WMI Query Language (WQL)
Write command, 60
WriteToRegKey.vbs, 376
WScript, 10
WScript.Arguments, 87
WScript.Arguments.Count method, 84–85
WScript.Arguments.Named, 90–91

to echo out value of strLine, 46
WScript.Echo command, 12, 20, 35, 36, 68, 84, 86, 97,

168, 172, 209, 318
WScript.Echo line, 99
WScript.exe, 13, 20
WScript.quit, 67
Wscript.shell object, 48–49, 170–171
WSH. See Windows Scripting Host (WSH)
WshNetwork class, 356
WshShell object, 170–171, 368–369

comspec variable, 368–369

define command, 369

About the Author
Ed Wilson is a senior consultant with the Operational Consulting group at Microsoft, where
he provides both consulting and training to global premier customers on the deployment and
management of scripting and WMI solutions. As a former network administrator, he brings an
infrastructure perspective to scripting solutions. Over the years, he has worked with custom­
ers in more than 35 different countries. He has written or contributed to 10 books and holds
more than 20 industry certifications, including both the MCSE and the CISSP.

	Cover
	Copyright Page

	Dedication
	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	A Practical Approach to Scripting
	Is This Book for Me?
	Outline of This Book
	Part I: Covering the Basics
	Part II: Basic Windows Administration
	Part III: Advanced Windows Administration
	Part IV: Scripting Other Applications
	Part V: Appendices

	Finding Your Best Starting Point
	About the Companion CD
	Installing the Practice Files on Your Computer
	Uninstalling the Practice Files

	System Requirements
	Technical Support

	Part I: Covering the Basics
	Chapter 1: Starting from Scratch
	Running Your First Script
	Header Information
	Reference Information
	Worker Information
	Output Information

	Enhancing Your Script
	Modifying an Existing Script
	Modifying the Header Information
	Modifying the Reference Information
	Modifying the Worker Information
	Modifying the Output Information

	Exploring a Script: Step-by-Step Exercises
	One Step Further: Customizing an Existing Script
	Scenario

	Chapter 2: Looping Through the Script
	Adding Power to Scripts
	For Each…Next
	Header Information
	Reference Information
	Worker Information

	For…Next
	Header Information
	Reference Information
	Worker and Output Information

	Do While...Loop
	Header Information
	Reference Information
	Worker and Output Information

	Do Until...Loop
	Worker and Output Information

	Do…Loop
	While…Wend
	Creating Additional Objects
	Using the For Each…Next Command Step-by-Step Exercises
	One Step Further: Modifying the Ping Script

	Chapter 3: Adding Intelligence
	If…Then
	Header Information
	Reference Information
	Worker and Output Information

	If…Then…ElseIf
	Header Information
	Reference Information
	Worker and Output Information

	If…Then…Else
	Select Case
	Header Information
	Reference Information
	Worker and Output Information

	Modifying CPUType.vbs Step-by-Step Exercises
	One Step Further: Modifying ComputerRoles.vbs
	Scenario

	Chapter 4: Working with Arrays
	Passing Arguments
	Command-Line Arguments
	Making the Change
	Running from the Command Prompt
	No Arguments?
	Creating a Useful Error Message

	Using Multiple Arguments
	Header Information
	Reference Information
	Worker and Output Information

	Tell Me Your Name
	Reasons for Named Arguments
	Making the Change to Named Arguments
	Running a Script with Named Arguments

	Working with Arrays
	Moving Past Dull Arrays
	Header Information
	Reference Information
	Worker and Output Information
	What Does UBound Mean?

	Two-Dimensional Arrays
	Mechanics of Two-Dimensional Arrays
	Header Information
	Reference Information
	Worker and Output Information

	Passing Arguments Step-by-Step Exercises
	One Step Further: Building Arrays

	Chapter 5: More Arrays
	Strings and Arrays
	Parsing Passed Text into an Array
	Header Information
	Reference Information
	Worker Information
	Output Information

	Parsing Passed Text
	Header Information
	Reference Information
	Worker Information
	Output Information

	Working with Dictionaries
	Understanding the Dictionary Object
	Adding Items to the Dictionary

	Using Basic InStr Step-by-Step Exercises
	One Step Further: Creating a Dictionary

	Part II: Basic Windows Administration
	Chapter 6: Working with the File System
	Creating the File System Object
	File It Under Files
	Header Information
	Reference Information
	Worker and Output Information

	File Properties
	File Attributes
	Implementing the Attributes Property
	Setting File Attributes

	Creating Files
	Writing to a Text File
	Determining the Best Way to Write to a File
	Overwriting a File

	Verifying a File Exists
	Creating Files Step-by-Step Exercises
	One Step Further: Creating a Log File

	Chapter 7: Working with Folders
	Working with Folders
	Creating the Basic Folder
	Creating Multiple Folders
	Header Information
	Reference Information
	Worker Information
	Output Information

	Automatic Cleanup
	Deleting a Folder
	Deleting Multiple Folders

	Binding to Folders
	Does the Folder Exist?

	Copying Folders
	Moving Folders
	Creating Folders Step-by-Step Exercises
	One Step Further: Deleting Folders

	Chapter 8: Using WMI
	Leveraging WMI
	Understanding the WMI Model
	Working with Objects and Namespaces
	Digging Deeper
	Listing WMI Providers
	Working with WMI Classes
	Viewing Properties
	Working with WMI Methods

	Querying WMI
	Header Information
	Reference Information
	Worker and Output Information

	Retrieving Hotfix Information Step-by-Step Exercise
	One Step Further: Echoing the Time Zone

	Chapter 9: WMI Continued
	Alternate Ways of Configuring the WMI Moniker
	Accepting Defaults
	Reference Information
	Worker and Output Information

	Moniker Security Settings
	WbemPrivilege Has Its Privileges

	Using the Default WMI Moniker Step-by-Step Exercises
	Invoking the WMI Moniker to Display the Machine Boot Configuration
	Including Additional Security Permissions
	One Step Further: Using Win32_Environment and VBScript to Learn About WMI

	Chapter 10: Querying WMI
	Tell Me Everything About Everything!
	Header Information
	Reference Information
	Worker and Output Information

	Selective Data from All Instances
	Selecting Multiple Properties
	Choosing Specific Instances
	Using an Operator
	Where Is the Where Clause?
	Writing an Informative WMI Script Step-by-Step Exercise
	One-Step-Further: Obtaining More Direct Information

	Part III: Advanced Windows Administration
	Chapter 11: Introduction to Active Directory Service Interfaces
	Working with ADSI
	Reference Information
	LDAP Names
	Worker Information
	Output Information

	Creating Users
	Reference Information
	Worker Information
	Output Information

	Creating OUs Step-by-Step Exercises
	One Step Further: Creating Multi-Valued Users

	Chapter 12: Writing for ADSI
	Working with Users
	General User Information
	Reference Information
	Worker Information
	Output Information

	Modifying the Address Tab Information
	Reference Information
	Worker Information
	Output Information
	Modifying Terminal Server Settings

	Deleting Users
	Deleting Users Step-by-Step Exercises
	One Step Further: Using the Event Log

	Chapter 13: Using ADO to Perform Searches
	Connecting to Active Directory to Perform a Search
	Header Information
	Reference Information
	Worker and Output Information

	Creating More Effective Queries
	Searching for Specific Types of Objects
	Reference Information
	Output Information

	What Is Global Catalog?
	Creating an ADO Query into Active Directory Step-by-Step Exercises
	One Step Further: Controlling Script Execution While Querying Active Directory

	Chapter 14: Configuring Networking Components
	WMI and the Network
	Making the Connection
	Header Information
	Reference Information
	Worker and Output Information

	Changing the TCP/IP Settings
	Header Information
	Reference Information
	Worker and Output Information

	Merging WMI and ADSI
	Win32_NetworkAdapterConfiguration
	Using WMI to Assign Network Settings Step-by-Step Exercises
	Instructions

	One Step Further: Combining WMI and ADSI in a Script

	Chapter 15: Using Subroutines and Functions
	Working with Subroutines
	Calling the Subroutine
	Creating the Subroutine

	Creating Users and Logging Results
	Header Information
	Reference Information
	Worker Information
	Output Information

	Working with Functions
	Using ADSI and Subs, and Creating Users Step-by-Step Exercises
	One Step Further: Adding a Logging Subroutine

	Chapter 16: Logon Scripts
	Working with IADsADSystemInfo
	Using Logon Scripts
	Deploying Logon Scripts
	Header Information
	Reference Information
	Worker Information

	Output Information
	Adding a Group to a Logon Script Step-by-Step Exercises
	One Step Further: Adding Logging to a Logon Script

	Chapter 17: Working with the Registry
	First You Back Up
	Creating the WshShell Object
	Setting the comspec Variable
	Defining the Command

	Connecting to the Registry
	Header Information
	Reference Information
	Worker and Output Information

	Unleashing the Power of the StdRegProv Class
	Creating Registry Keys
	Header Information
	Reference Information
	Worker and Output Information

	Writing to the Registry
	Deleting Registry Information
	Reading the Registry Using WMI Step-by-Step Exercises
	One Step Further: Creating Registry Keys

	Chapter 18: Working with Printers
	Working with Win32_Printer
	Obtaining the Status of Printers
	Header Information
	Reference Information
	Worker Information
	Output Information

	Creating a Filtered Print Monitor
	Reference Information
	Output Information

	Monitoring Print Queues
	Worker and Output Information

	Monitoring Print Jobs Step-by-Step Exercises
	One Step Further: Checking the Status of a Print Server

	Part IV: Scripting Other Applications
	Chapter 19: Managing IIS 6.0
	Locating the WMI classes for IIS 6.0
	CIM_ManagedSystemElement
	CIM_Setting
	IIsStructuredDataClass
	CIM_Component
	CIM_ElementSetting
	Using MicrosoftIISv2

	Making the Connection
	Header Information
	Reference Information
	Worker and Output Information

	Creating a Web Site
	Header Information
	Reference Information
	Worker and Output Information

	Backing Up the Metabase Step-by-Step Exercises
	One Step Further: Importing the Metabase

	Chapter 20: Working with Exchange 2003
	Working with the Exchange Provider
	Connecting to MicrosoftExchangeV2
	The Exchange_QueueSMTPVirtualServer Class
	Header Information
	Reference Information
	Worker Information
	Output Information

	Exchange Public Folders
	Exchange_FolderTree
	Using the Exchange_Logon Class Step-by-Step Exercises
	One Step Further: Using the Exchange_Mailbox Class

	Chapter 21: Troubleshooting WMI Scripting
	Identifying the Problem
	Spotting Common Sources of Errors

	Testing the Local WMI Service
	Using the WMI Control Tool
	Using the Scriptomatic
	Examining the Status of the WMI Service
	Using WBEMtest.exe

	Testing Remote WMI Service
	Remotely Using the WMI Control Tool

	Testing Scripting Interface
	Obtaining Diagnostic Information
	Enabling Verbose WMI Logging
	Examining the WMI Log Files
	Using the Err Tool
	Using MofComp.exe
	Using WMIcheck

	General WMI Troubleshooting Steps
	Working with Logging Step-by-Step Exercises
	One Step Further: Compiling MOF files

	Part V Appendices
	Appendix A: VBScript Documentation
	Constants
	VBScript Run-Time Errors
	VBScript Syntax Errors
	FileSystemObject Object Model

	Appendix B: ADSI Documentation
	Computer Object Mapping
	Domain Object User Interface Mapping
	Group Object User Interface Mapping
	Object Property Tab
	Organizational Unit User Interface Mapping
	Printer Object User Interface Mapping
	Shared Folder Object User Interface Mapping
	User Object User Interface Mapping

	Appendix C: WMI Documentation
	Win32 Classes
	WMI Providers
	WMI Scripting API Objects
	WMI Log Files
	WMI Scripting Object Model

	Appendix D: Documentation Standards
	Header Information Section
	Reference Information Section
	Worker Information Section
	Output Information Section
	Sample of Documentation Use
	Variable Naming Conventions

	Appendix E: Special Folder Constants

	Index
	About the Author

